All Title Author
Keywords Abstract

Generation and Analysis of Expressed Sequence Tags from Olea europaea L.

DOI: 10.1155/2010/757512

Full-Text   Cite this paper   Add to My Lib


Olive (Olea europaea L.) is an important source of edible oil which was originated in Near-East region. In this study, two cDNA libraries were constructed from young olive leaves and immature olive fruits for generation of ESTs to discover the novel genes and search the function of unknown genes of olive. The randomly selected 3840 colonies were sequenced for EST collection from both libraries. Readable 2228 sequences for olive leaf and 1506 sequences for olive fruit were assembled into 205 and 69 contigs, respectively, whereas 2478 were singletons. Putative functions of all 2752 differentially expressed unique sequences were designated by gene homology based on BLAST and annotated using BLAST2GO. While 1339 ESTs show no homology to the database, 2024 ESTs have homology (under 80%) with hypothetical proteins, putative proteins, expressed proteins, and unknown proteins in NCBI-GenBank. 635 EST's unique genes sequence have been identified by over 80% homology to known function in other species which were not previously described in Olea family. Only 3.1% of total EST's was shown similarity with olive database existing in NCBI. This generated EST's data and consensus sequences were submitted to NCBI as valuable source for functional genome studies of olive. 1. Introduction Oleacea family comprises 600 species in 24 genus and disseminates all around the world. The olive Olea europaea L, which is one of the first domesticated agricultural tree crops in the family Oleaceae, is cultivated mainly for both edible oil and table olives. The domestication of Olea europaea is supposed to be realized some 5700–5500 years ago in the Near-East [1]. Therefore, Anatolia is one of the most important areas of the olive origin of which over 86 varieties of Europea species are present in Turkey (Anatolia). It is known that olive is native to coastal areas of the Mediterranean region such as Spain, Italy, Greece, France, Turkey, Algeria, and Morocco. Olive is the most extensively cultivated fruit crop with its orchards cover about 9.8?mil. ha. in the world. According to the statistics published by FAO, Turkey is the fourth largest producer of olive oil in the world, after Spain, Italy, and Greece. Turkey is the first producer of black table olive in the world and Gemlik cuv. represents 80% of black table olives production in Turkey. Because of economical importance of Gemlik, a lot of research centers in Turkey continue their molecular and classical breeding program for this cultivar. Most of the genetic studies in cultivated plants are focused on the understanding of genetic


[1]  M. Zohary and M. Hopf, Domestication of Plants in the Old World, Clarendon, Oxford, UK, 2nd edition, 1994.
[2]  R. A. Martienssen, “Weeding out the genes: the Arabidopsis genome project,” Functional and Integrative Genomics, vol. 1, no. 1, pp. 2–11, 2000.
[3]  K. Yamamoto and T. Sasaki, “Large-scale EST sequencing in rice,” Plant Molecular Biology, vol. 35, no. 1-2, pp. 135–144, 1997.
[4]  J. Yu, S. Hu, and S. Hu, “A draft sequence of the rice genome (Oryza sativa L. ssp. indica),” Science, vol. 296, no. 5565, pp. 79–92, 2002.
[5]  R. Van der Hoeven, C. Ronning, J. Giovannoni, G. Martin, and S. Tanksley, “Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing,” Plant Cell, vol. 14, no. 7, pp. 1441–1456, 2002.
[6]  R. Moyle, D. J. Fairbairn, J. Ripi, M. Crowe, and J. R. Botella, “Developing pineapple fruit has a small transcriptome dominated by metallothionein,” Journal of Experimental Botany, vol. 56, no. 409, pp. 101–112, 2005.
[7]  C. Moser, C. Segala, and C. Segala, “Comparative analysis of expressed sequence tags from different organs of Vitis vinifera L,” Functional and Integrative Genomics, vol. 5, no. 4, pp. 208–217, 2005.
[8]  J. Grimplet, C. Romieu, and C. Romieu, “Transcriptomic study of apricot fruit (Prunus armeniaca) ripening among 13 006 expressed sequence tags,” Physiologia Plantarum, vol. 125, no. 3, pp. 281–292, 2005.
[9]  R. D. Newcomb, R. N. Crowhurst, and R. N. Crowhurst, “Analyses of expressed sequence tags from apple,” Plant Physiology, vol. 141, no. 1, pp. 147–166, 2006.
[10]  Z. Wiesman, N. Avidan, S. Lavee, and B. Quebedeaux, “Molecular characterization of common olive varieties in Israel and the West Bank using randomly amplified polymorphic DNA (RAPD) markers,” Journal of the American Society for Horticultural Science, vol. 123, no. 5, pp. 837–841, 1998.
[11]  G. T. Mekuria, G. G. Collins, and M. Sedgley, “Genetic variability between different accessions of some common commercial olive cultivars,” Journal of Horticultural Science and Biotechnology, vol. 74, no. 3, pp. 309–314, 1999.
[12]  A. Angiolillo, M. Mencuccini, and L. Baldoni, “Olive genetic diversity assessed using amplified fragment length polymorphisms,” Theoretical and Applied Genetics, vol. 98, no. 3-4, pp. 411–421, 1999.
[13]  G. Besnard, P. S. Green, and A. Bervillé, “The genus Olea: molecular approaches of its structure and relationships to other Oleaceae,” Acta Botanica Gallica, vol. 149, no. 1, pp. 49–66, 2002.
[14]  P. Rallo, G. Dorado, and A. Martín, “Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.),” Theoretical and Applied Genetics, vol. 101, no. 5-6, pp. 984–989, 2000.
[15]  A. Belaj, I. Trujillo, R. De la Rosa, L. Rallo, and M. J. Giménez, “Polymorphism and discrimination capacity of randomly amplified polymorphic markers in an olive germplasm bank,” Journal of the American Society for Horticultural Science, vol. 126, no. 1, pp. 64–71, 2001.
[16]  G. Besnard and A. Bervillé, “On chloroplast DNA variations in the olive (Olea europaea L.) complex: comparison of RFLP and PCR polymorphisms,” Theoretical and Applied Genetics, vol. 104, no. 6-7, pp. 1157–1163, 2002.
[17]  V. B. de Caraffa, J. Maury, C. Gambotti, C. Breton, A. Bervillé, and J. Giannettini, “Mitochondrial DNA variation and RAPD mark oleasters, olive and feral olive from Western and Eastern Mediterranean,” Theoretical and Applied Genetics, vol. 104, no. 6-7, pp. 1209–1216, 2002.
[18]  G. Cipriani, M. T. Marrazzo, R. Marconi, A. Cimato, and R. Testolin, “Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars,” Theoretical and Applied Genetics, vol. 104, no. 2-3, pp. 223–228, 2002.
[19]  K. M. Sefc, M. S. Lopes, D. Mendon?a, M. R. Dos Santos, L. M. da C. Machado, and A. Da C. Machado, “Identification of microsatellite loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees,” Molecular Ecology, vol. 9, no. 8, pp. 1171–1173, 2000.
[20]  G. Galla, G. Barcaccia, A. Ramina, et al., “Computational annotation og genes differentially expressed along olive fruit development,” BMC Plant Biology, vol. 9, article 128, 2009.
[21]  J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 1989.
[22]  I. Feliciello and G. Chinali, “A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli,” Analytical Biochemistry, vol. 212, no. 2, pp. 394–401, 1993.
[23]  B. Ewing and P. Green, “Base-calling of automated sequencer traces using phred. II. Error probabilities,” Genome Research, vol. 8, no. 3, pp. 186–194, 1998.
[24]  B. Ewing, L. Hillier, M. C. Wendl, and P. Green, “Base-calling of automated sequencer traces using phred. I. Accuracy assessment,” Genome Research, vol. 8, no. 3, pp. 175–185, 1998.
[25]  X. Huang, “A contig assembly program based on sensitive detection of fragment overlaps,” Genomics, vol. 14, no. 1, pp. 18–25, 1992.
[26]  X. Huang and A. Madan, “CAP3: a DNA sequence assembly program,” Genome Research, vol. 9, no. 9, pp. 868–877, 1999.
[27]  D. Gordon, C. Abajian, and P. Green, “Consed: a graphical tool for sequence finishing,” Genome Research, vol. 8, no. 3, pp. 195–202, 1998.
[28]  D. Gordon, C. Desmarais, and P. Green, “Automated finishing with autofinish,” Genome Research, vol. 11, no. 4, pp. 614–625, 2001.
[29]  A. Conesa, S. G?tz, J. M. García-Gómez, J. Terol, M. Talón, and M. Robles, “Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research,” Bioinformatics, vol. 21, no. 18, pp. 3674–3676, 2005.
[30]  A. Conesa and S. G?tz, “Blast2GO: a comprehensive suite for functional analysis in plant genomics,” International Journal of Plant Genomics, vol. 2008, Article ID 619832, 12 pages, 2008.
[31]  A. O. Schmitt, T. Specht, G. Beckmann, E. Dahl, C. P. Pilarsky, B. Hinzmann, and A. Rosenthal, “Exhaustive mining of EST libraries for genes differentially expressed in normal and tumour tissues,” Nucleic Acids Research, vol. 27, no. 21, pp. 4251–4260, 1999.
[32]  Y. Lee, J. Tsai, and J. Tsai, “The TIGR Gene Indices: clustering and assembling EST and know genes and integration with eukaryotic genomes,” Nucleic Acids Research, vol. 33, pp. D71–D74, 2005.
[33]  S. Audic and J.-M. Claverie, “The significance of digital gene expression profiles,” Genome Research, vol. 7, no. 10, pp. 986–995, 1997.
[34]  S. Gupta, D. Zink, B. Korn, M. Vingron, and S. A. Haas, “Genome wide identification and classification of alternative splicing based on EST data,” Bioinformatics, vol. 20, no. 16, pp. 2579–2585, 2004.


comments powered by Disqus