全部 标题 作者
关键词 摘要


Comparing Relationships among Yield and Its Related Traits in Mycorrhizal and Nonmycorrhizal Inoculated Wheat Cultivars under Different Water Regimes Using Multivariate Statistics

DOI: 10.1155/2013/682781

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multivariate statistical techniques were used to compare the relationship between yield and its related traits under noninoculated and inoculated cultivars with mycorrhizal fungus (Glomus intraradices); each one consisted of three wheat cultivars and four water regimes. Results showed that, under inoculation conditions, spike weight per plant and total chlorophyll content of the flag leaf were the most important variables contributing to wheat grain yield variation, while, under noninoculated condition, in addition to two mentioned traits, grain weight per spike and leaf area were also important variables accounting for wheat grain yield variation. Therefore, spike weight per plant and chlorophyll content of flag leaf can be used as selection criteria in breeding programs for both inoculated and noninoculated wheat cultivars under different water regimes, and also grain weight per spike and leaf area can be considered for noninoculated condition. Furthermore, inoculation of wheat cultivars showed higher value in the most measured traits, and the results indicated that inoculation treatment could change the relationship among morphological traits of wheat cultivars under drought stress. Also, it seems that the results of stepwise regression as a selecting method together with principal component and factor analysis are stronger methods to be applied in breeding programs for screening important traits. 1. Introduction Bread wheat (Triticum aestivum L.) is one of the most widely cultivated and important food crop in the world. Development of high yielding wheat cultivars is the major objective of breeding programs [1]. On the other hand, targeted efforts to breed genotypes for improved mycorrhizal symbiosis result in increased yield in crops under a wide range of environmental conditions and contribute toward sustainability of agricultural ecosystems in which soil-plant-microbe interactions will be better exploited. Screening genotypes via molecular biology and traditional breeding techniques can increase productivity of symbioses and eventually result in increased economic yield of crop plants [2]. Arbuscular mycorrhizal (AM) fungi colonize the roots of most monocotyledons and dicotyledons, including important crops such as rice, maize, and wheat despite their different root architecture and cell patterning. In nature, mineral nutrient acquisition and water uptake by plant roots are often assisted by symbioses with beneficial AM fungi. During this intimate association, the extraradical hyphal mycelium acquires minerals from the soil beyond the zone

References

[1]  B. Heidari, G. Saeidi, B. E. Sayed-Tabatabaei, and K. Suenaga, “The interrelationships of agronomic characters in a doubled haploid population of wheat,” Czech Journal of Genetics and Plant Breeding, vol. 41, pp. 233–237, 2005.
[2]  Z. Rengel, “Breeding for better symbiosis,” Plant and Soil, vol. 245, no. 1, pp. 147–162, 2002.
[3]  C. Gutjahr, L. Casieri, and U. Paszkowski, “Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling,” New Phytologist, vol. 182, no. 4, pp. 829–837, 2009.
[4]  G. N. Al-Karaki and A. Al-Raddad, “Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance,” Mycorrhiza, vol. 7, no. 2, pp. 83–88, 1997.
[5]  R. K. Singh and B. D. Chowdhury, Biometrical Method in Quantitative Genetic Analysis, Kalyani, New Delhi, India, 1985.
[6]  M. Iqbal, M. I. Ali, A. Abbas, M. Zulkiffal, M. Zeeshan, and H. A. Sadaqat, “Genetic behavior and impact of various quantitative traits on oil content in sunflower under water stress conditions at productive phase,” Plant Omics Journal, vol. 2, pp. 70–77, 2009.
[7]  M. B. Kumbhar, A. S. Larik, H. M. Hafiz, and M. J. Rind, Wheat Information Services, vol. 57, 1983.
[8]  M. Moghaddam, B. Ehdaie, and J. G. Waines, “Genetic variation for and interrelationships among agronomic traits in landraces of bread wheat from southwestern Iran,” Journal of Genetics and Breeding, vol. 52, no. 1, pp. 73–81, 1998.
[9]  A. A. Leilah and S. A. Al-Khateeb, “Statistical analysis of wheat yield under drought conditions,” Journal of Arid Environments, vol. 61, no. 3, pp. 483–496, 2005.
[10]  O. Alizadeh and A. Alizadeh, “Consideration use of mycorrhiza and vermicompost to optimizing of chemical fertilizer application in corn cultivation,” Advances in Environmental Biology, vol. 5, no. 6, pp. 1279–1284, 2011.
[11]  M. R. Ardakani, D. Mazaheri, A. H. Shirani Rad, and S. Mafakheri, “Uptake of Micronutrients by wheat (Triticum aestivum L.) in a sustainable agroecosystem,” Middle-East Journal of Scientific Research, vol. 7, no. 4, pp. 444–451, 2011.
[12]  R. G. D. Steel and J. H. Torrie, Principles and Procedures of Statistics, McGraw Hill, New York, NY, USA, 1960.
[13]  P. J. Bramel, P. N. Hinz, D. E. Green, and R. M. Shibles, “Use of principal factor analysis in the study of three stem termination types of soybean,” Euphytica, vol. 33, no. 2, pp. 387–400, 1984.
[14]  R. W. Allard, Principles of Plant Breeding, John Wiley & Sons, New York, NY, USA, 1st edition, 1960.
[15]  A. L. Page, H. R. Miller, and R. D. Keeney, Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties. Monograph, Number 9, ASA, Madison, Wis, USA, 2nd edition, 1982.
[16]  C. J. Birch, G. L. Hammer, and K. G. Rickert, “Improved methods for predicting individual leaf area and leaf senescence in maize (Zea mays),” Australian Journal of Agricultural Research, vol. 49, no. 2, pp. 249–262, 1998.
[17]  E. G. Montgomery, “Correlation studies in corn,” 24th Annual Report, Agricultural Experiment Station, Nebraska, Mo, USA, 1911.
[18]  H. K. Lichtenthaler and A. R. Wellburn, “Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents,” Biochemistry Society Transactions, vol. 11, pp. 591–592, 1983.
[19]  G. W. Snedecor and W. G. Cochran, Statistical Methods, Iowa State University, Ames, Iowa, USA, 7th edition, 1981.
[20]  N. R. Draper and H. Smith, Applied Regression Analysis, Wiley, New York, NY, USA, 1966.
[21]  G. J. Seiller and R. E. Stafford, “Factor analysis of components in Guar,” Crop Science, vol. 25, pp. 905–908, 1985.
[22]  B. S. Everitt and G. Dunn, Applied Multivariate Data Analysis, Oxford University, New York, NY, USA, 1992.
[23]  D. R. Dewey and K. H. Lu, “A correlation and path coefficient analysis of components of crested wheat grass seed production,” Agronomy Journal, vol. 51, pp. 515–518, 1959.
[24]  B. S. Everitt, Cluster Analysis, Wiley, New York, NY, USA, 1993.
[25]  M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868, 1998.
[26]  SAS Institute, “The SAS system for Windows,” Release 9. 1. SAS Inst., Cary, NC, USA., 2004.
[27]  L. T. Evans and R. A. Fisher, “Yield potential: its definition, measurement, and significance,” Crop Science, vol. 39, no. 6, pp. 1544–1551, 1999.
[28]  N. K. Gupta, S. Gupta, and A. Kumar, “Effect of water stress on physiological attributes and their relationship with growth and yield of wheat cultivars at different stages,” Journal of Agronomy and Crop Science, vol. 186, no. 1, pp. 55–62, 2001.
[29]  N. A. Mohamed, “Some statistical procedures for evaluation of the relative contribution for yield components in wheat,” Zagazig Journal of Agricultural Research, vol. 26, no. 2, pp. 281–290, 1999.
[30]  S. Asseng, N. C. Turner, J. D. Ray, and B. A. Keating, “A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat,” European Journal of Agronomy, vol. 17, no. 2, pp. 123–141, 2002.
[31]  X. Yin, S. D. Chasalow, P. Stam et al., “Use of component analysis in QTL mapping of complex crop traits: a case study on yield in barley,” Plant Breeding, vol. 121, no. 4, pp. 314–319, 2002.
[32]  J. M. Ruiz-Lozano, “Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies,” Mycorrhiza, vol. 13, no. 6, pp. 309–317, 2003.
[33]  M. R. Sweatt and F. T. Davies, “Mycorrhizae, water relations, growth, and nutrient uptake of geranium grown under moderately high phosphorus regimes,” Journal of the American Society for Horticultural Science, vol. 109, pp. 210–213, 1984.
[34]  G. N. Al-Karaki and A. Al-Raddad, “Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance,” Mycorrhiza, vol. 7, no. 2, pp. 83–88, 1997.
[35]  R. M. Augé, “Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis,” Mycorrhiza, vol. 11, pp. 3–42, 2001.
[36]  M. Ruiz-Sánchez, R. Aroca, Y. Mu?oz, R. Polón, and J. M. Ruiz-Lozano, “The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress,” Journal of Plant Physiology, vol. 167, no. 11, pp. 862–869, 2010.
[37]  A. Moucheshi, B. Heidari, and M. T. Assad, “Alleviation of drought stress effects on wheat using arbuscular mycorrhizal symbiosis,” International Journal of AgriScience, vol. 2, pp. 35–47, 2012.

Full-Text

comments powered by Disqus