全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Inheritance and Linkage Map Positions of Genes Conferring Agromorphological Traits in Lens culinaris Medik.

DOI: 10.1155/2013/618926

Full-Text   Cite this paper   Add to My Lib

Abstract:

Agromorphological traits have immense importance in breeding lentils for higher yield and stability. We studied the genetics and identified map positions of some important agro-morphological traits including days to 50% flowering, plant height, seed diameter, 100 seed weight, cotyledon color, and growth habit in Lens culinaris. Earlier developed RILs for stemphylium blight resistance (ILL-5888?×?ILL-6002), contrasted for those agro-morphological traits, were used in our study. Three QTLs for days to 50% flowering were detected with additive and epistatic effects. One QTL for days to 50% flowering, QLG483 (QTL at linkage group 4 at 83?cM position), accounted for an estimated 20.2% of the variation, while QLG124?×?QLG1352 and QLG484?×?QLG138 accounted for 15.6% and 24.2% of the variation, respectively. Epistatic effects accounted for most of the variation in plant height, but the main effect of one QTL, QLG84, accounted for 15.3%. For seed diameter, three QTLs were detected, and one QTL, QLG482, accounted for 32.6% of the variation. For 100 seed weight, five QTLs were identified with significant additive effects and four with significant interaction effects. The main effect of one QTL, QLG482, also accounted for 17.5% of the variation in seed diameter. QLG which appears to affect days to 50% flowering, seed diameter, and 100 seed weight is flanked by RAPD markers, UBC 34 and UBC1. Growth habit and cotyledon color are controlled by single genes with prostrate dominant to erect and red cotyledon dominant to yellow. The QTL information presented here will assist in the selection of breeding lines for early maturity, upright growth habit, and improved seed quality. 1. Introduction Agromorphological traits have immense importance in crop breeding. Crop adaptation, field performance, market value, and demands for specific uses are major factors that drive breeding goals. Linkage maps and QTL analysis are valuable tools for plant breeders to improve breeding efficiency by tagging genes with markers and analyzing the association between markers and traits. The inheritance of quantitative traits and tagging genes such as days to 50% flowering, plant height, seed diameter, and seed weight and qualitative trait genes such as growth habit and cotyledon color in lentil (Lens culinaris Medikus subsp. culinaris) will help breeders in the selection process and understanding interrelationships among traits. Lentil is quantitative long-day plant flowering in progressively longer days [1]. Sometimes it is hard to determine days to maturity at or near the end of a crop

References

[1]  E. H. Roberts, R. J. Summerfield, F. J. Muehlbauer, and R. W. Short, “Flowering in lentil (Lens culinaris medic.): the duration of the photoperiodic inductive phase as a function of accumulated daylength above the critical photoperiod,” Annals of Botany, vol. 58, no. 2, pp. 235–248, 1986.
[2]  A. Tulmann Neto and M. C. Alves, “Induction of mutations for earliness in the soybean cultivar Parana,” Brazilian Journal of Genetics, vol. 20, no. 1, pp. 45–50, 1997.
[3]  A. Sarker, W. Erskine, B. Sharma, and M. C. Tyagi, “Inheritance and linkage relationships of days to flower and morphological loci in lentil (Lens culinaris Medikus subsp. culinaris),” Journal of Heredity, vol. 90, no. 2, pp. 270–275, 1999.
[4]  M. C. Saxena and G. C. Hawtin, “Morphology and growth patterns,” in Lentils, C. Webb and G. Hawtin, Eds., pp. 39–52, Commonwealth Agricultural Bureaux, Slough, UK, 1981.
[5]  F. J. Muehlbauer, R. W. Short, R. J. Summerfield, K. J. Morrison, and D. G. Swan, Description and Culture of Lentils, Cooperative Extension, College of Agriculture, Washington State University and USDA-ARS, Washington, DC, USA, 1981.
[6]  D. Sakar, Breeding behaviour of characters related to yield and adaptation to mechanical harvesting in lentil (Lens culinaris Medik.) [Ph.D. dissertation], Department of Agronomy and Soils, Washington State University, Washington, DC, USA, 1983.
[7]  A. Tullu, B. Tar'an, T. Warkentin, and A. Vandenberg, “Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil,” Crop Science, vol. 48, no. 6, pp. 2254–2264, 2008.
[8]  G. Ladizinsky, “The genetics of several characteristics in lentil as indicated by crosses between Lens culinaris and Lens orientalis,” Journal of Heredity, vol. 70, pp. 135–137, 1979.
[9]  H. Barulina, “Lentils of the USSR and other counties,” Bulletin of Applied Botany, Genetics, and Plant Breeding, vol. 40, pp. 225–238, 1930.
[10]  S. Abbo, G. Ladizinsky, and N. F. Weeden, “Genetic analysis and linkage study of seed weight in lentil,” Euphytica, vol. 58, no. 3, pp. 259–266, 1991.
[11]  F. J. Muehlbauer, “Lentil: improvement in developing countries,” in The Lentil: Botany, Production and Uses, W. Erskine, F. J. Muehlbauer, A. Sarker, and B. Sharma, Eds., pp. 137–154, CAB International, Oxford, UK, 2009.
[12]  E. Tschermak-Seysenegg, “Lentil and fieldbean crosses,” Sityringsbe Akad Wiss Wien Math Nat, vol. 137, no. 3-4, pp. 171–181, 1928.
[13]  F. J. cf. Muehlbauer and A. E. Slinkard, “Breeding methodology,” in Lentils, C. Webb and G. Hawtin, Eds., pp. 69–90, CAB-ICARDA, Farnham, UK, 1987.
[14]  V. E. Wilson, A. G. Law, and R. L. Warner, “Inheritance of cotyledon color in Lens Culinaris (Medic.),” Crop Science, vol. 10, pp. 205–207, 1970.
[15]  T. P. Singh, “Inheritance of cotyledon colour in lentil,” Indian Journal of Genetics, vol. 38, pp. 11–12, 1978.
[16]  A. E. Slinkard, “Inheritance of cotyledon color in lentils,” Journal of Heredity, vol. 69, pp. 139–140, 1978.
[17]  B. Sharma and M. K. Emami, “Discovery of a new gene causing dark green cotyledons and pathway of pigment synthesis in lentil (Lens culinaris Medik),” Euphytica, vol. 124, no. 3, pp. 349–353, 2002.
[18]  G. C. Saha, A. Sarker, W. Chen, G. J. Vandemark, and F. J. Muehlbauer, “Inheritance and linkage map positions of genes conferring resistance to Stemphylium blight in lentil,” Crop Science, vol. 50, no. 5, pp. 1831–1839, 2010.
[19]  H. Li, J.-M. Ribaut, Z. Li, and J. Wang, “Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations,” Theoretical and Applied Genetics, vol. 116, no. 2, pp. 243–260, 2008.
[20]  J. C. Nelson, “QGENE: software for marker-based genomic analysis and breeding,” Molecular Breeding, vol. 3, no. 3, pp. 239–245, 1997.
[21]  M. K. Emami and B. Sharma, “Linkage between three morphological markers in lentil,” Plant Breeding, vol. 118, no. 6, pp. 579–581, 1999.
[22]  Y. Kumar, Inheritance and linkage of genes for morphological traits in lentil (Lens culinaris. Medik.) [Ph.D. thesis], CCS University, Meerut, India, 2002.
[23]  S. K. Mishra, “Final technical report on development of comprehensive genetic linkage map in lentil (Lens culinaris Medik.),” Tech. Rep., ICAR, New Delhi, India, 2004.
[24]  M. Tahir and F. J. Muehlbauer, “Gene mapping in lentil with recombinant inbred lines,” Journal of Heredity, vol. 85, no. 4, pp. 306–310, 1994.
[25]  J. I. Cubero, “Taxonomy, distribution and evolution of faba bean and its wild relative,” in Genetic Resources and Their Explotation: Chickpeas, Faba Beans and Lentils, J. R. Witcombe and W. Erskine, Eds., pp. 131–144, Springer, Berlin, Germany, 1984.
[26]  J. B. Smithson, J. A. Thompson, and R. J. Summerfield, “Chickpea (Cicer arietinum L.).,” in Grain Legume Crops, R. J. Summerfield and E. H. Roberts, Eds., pp. 312–390, Collins, London, UK, 1985.
[27]  M. Niknejad, M. Khosh-khui, and S. R. Ghorashy, “Inheritance of seed size in chickpeas (Cicer arietinum L.),” Crop Science, vol. 11, pp. 768–769, 1971.
[28]  D. R. Davies, G. J. Berry, M. C. Health, and T. C. K. Dawkins, “Pea (Pisum sativum L.).,” in Grain Legume Crops, R. J. Summerfield and E. H. Roberts, Eds., pp. 147–198, Williams Collins Sons, London, UK, 1985.
[29]  W. L. Johannsen, “Om Arvelighed i Samfund ogrene Linier,” Kongelige Danske Videnskabernes Selskabs Forhandlinger, vol. 3, pp. 235–294, 1903.
[30]  M. Motto, G. P. Soressi, and F. Salamini, “Seed size inheritance in a cross between wild and cultivated common beans (Phaseolus vulgaris L.),” Genetica, vol. 49, no. 1, pp. 31–36, 1978.
[31]  B. C. Imrie, Z. U. Ahmed, and J. P. J. Eerens, “Heritability of seed weight in mungbean,” SABRAO Journal, vol. 17, pp. 173–175, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133