All Title Author
Keywords Abstract

The Hippo-Yes Association Protein Pathway in Liver Cancer

DOI: 10.1155/2013/187070

Full-Text   Cite this paper   Add to My Lib


Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the third leading cause of cancer mortality. Despite continuing development of new therapies, prognosis for patients with HCC remains extremely poor. In recent years, control of organ size becomes a hot topic in HCC development. The Hippo signaling pathway has been delineated and shown to be critical in controlling organ size in both Drosophila and mammals. The Hippo kinase cascade, a singling pathway that antagonizes the transcriptional coactivator Yes-associated protein (YAP), plays an important role in animal organ size control by regulating cell proliferation and apoptosis rates. During HCC development, this pathway is likely inactivated in tumor initiated cells that escape suppressive constrain exerted by the surrounding normal tissue, thus allowing clonal expansion and tumor development. We have reviewed evolutionary changes in YAP as well as other components of the Hippo pathway and described the relationships between YAP genes and HCC. We also discuss regulation of transcription factors that are up- and downstream of YAP in liver cancer development. 1. Introduction Human hepatocellular carcinoma (HCC) is one of the most common cancers, with nearly 600,000 deaths each year worldwide. In addition, its incidence increases every year. HCC usually develops in patients with chronic inflammatory liver disease such as viral infection and/or exposure to chemical carcinogens. Surgical reaction and liver transplantation are currently the best curative options to treat HCC. However, recurrence or metastasis is quite common in patients who have had a resection [1]. Hepatocarcinogenesis is a complex process associated with accumulation of genetic and epigenetic changes that occur during initiation, promotion, and progression of the disease. The role of hepatitis B virus (HBV) infection in causing HCC is well established. The risk of developing HCC was 200 times higher among employees who had chronic HBV as compared to employees without chronic HBV. Hepatitis B virus X protein (HBx) plays critical roles in the development of HCC. Zhang et al. found that the expression of YAP was dramatically elevated in clinical HCC samples, HBV infected hepatic cell line, and liver cancer tissues of HBx transgenic mice. Overexpression of HBx resulted in the upregulation of YAP, while HBx-RNA interference reduced YAP expression. YAP short interfering RNA was able to remarkably block the HBx-enhanced growth of hepatoma cells in vivo and in vitro. Hepatitis C virus (HCV) infection is also


[1]  A. M. Liu, R. T. P. Poon, and J. M. Luk, “MicroRNA-375 targets Hippo-signaling effector YAP in liver cancer and inhibits tumor properties,” Biochemical and Biophysical Research Communications, vol. 394, no. 3, pp. 623–627, 2010.
[2]  T. Zhang, J. Zhang, X. You et al., “Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells,” Hepatology, vol. 56, pp. 2051–2059, 2012.
[3]  D. Zhou, C. Conrad, F. Xia et al., “Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene,” Cancer Cell, vol. 16, no. 5, pp. 425–438, 2009.
[4]  H. Li, A. Wolfe, S. Septer et al., “Deregulation of Hippo kinase signalling in Human hepatic malignancies,” Liver International, vol. 32, no. 1, pp. 38–47, 2012.
[5]  U. Apte, V. Gkretsi, W. C. Bowen et al., “Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase,” Hepatology, vol. 50, no. 3, pp. 844–851, 2009.
[6]  D. Hilman and U. Gat, “The evolutionary history of YAP and the Hippo/YAP pathway,” Molecular Biology and Evolution, vol. 28, no. 8, pp. 2403–2417, 2011.
[7]  F. D. Camargo, S. Gokhale, J. B. Johnnidis et al., “YAP1 increases organ size and expands undifferentiated progenitor cells,” Current Biology, vol. 17, no. 23, pp. 2054–2060, 2007.
[8]  S. Dupont, L. Morsut, M. Aragona et al., “Role of YAP/TAZ in mechanotransduction,” Nature, vol. 474, no. 7350, pp. 179–184, 2011.
[9]  K.-P. Lee, J.-H. Lee, T.-S. Kim et al., “The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 18, pp. 8248–8253, 2010.
[10]  C. Rodrigues-Pousada, R. A. Menezes, and C. Pimentel, “The Yap family and its role in stress response,” Yeast, vol. 27, no. 5, pp. 245–258, 2010.
[11]  V. Tomlinson, K. Gudmundsdottir, P. Luong, K.-Y. Leung, A. Knebel, and S. Basu, “JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis,” Cell Death and Disease, vol. 1, no. 2, article e29, 2010.
[12]  B. Zhao, Q. Lei, and K.-L. Guan, “Mst out and HCC in,” Cancer Cell, vol. 16, no. 5, pp. 363–364, 2009.
[13]  Y. Bao, K. Nakagawa, Z. Yang et al., “A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription,” Journal of Biochemistry, vol. 150, no. 2, pp. 199–208, 2011.
[14]  M. A. Kowalik, C. Saliba, M. Pibiri et al., “Yes-associated protein regulation of adaptive liver enlargement and hepatocellular carcinoma development in mice,” Hepatology, vol. 53, no. 6, pp. 2086–2096, 2011.
[15]  J. Avruch, D. Zhou, J. Fitamant, and N. Bardeesy, “Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development,” British Journal of Cancer, vol. 104, no. 1, pp. 24–32, 2011.
[16]  S. W. Chan, C. J. Lim, L. Chen et al., “The hippo pathway in biological control and cancer development,” Journal of Cellular Physiology, vol. 226, no. 4, pp. 928–939, 2011.
[17]  M. Z. Xu, T.-J. Yao, N. P. Y. Lee et al., “Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma,” Cancer, vol. 115, no. 19, pp. 4576–4585, 2009.
[18]  B. Zhao, L. Li, Q. Lu et al., “Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein,” Genes and Development, vol. 25, no. 1, pp. 51–63, 2011.
[19]  H. Bai, N. Zhang, Y. Xu et al., “Yes-associated protein regulates the hepatic response after bile duct ligation,” Hepatology, vol. 56, no. 3, pp. 1097–1107, 2012.
[20]  H. Zhang, S. Wu, and D. Xing, “Inhibition of Aβ25-35-induced cell apoptosis by Low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation,” Cellular Signalling, vol. 24, no. 1, pp. 224–232, 2012.
[21]  C. Xu, C. Liu, W. Huang, S. Tu, and F. Wan, “Effect of Mst1 overexpression on the growth of human hepatocellular carcinoma HepG2 cells and the sensitivity to cisplatin in vitro,” Acta Biochimica et Biophysica Sinica, vol. 45, no. 4, pp. 268–279, 2013.
[22]  L. Lu, Y. Li, S. M. Kim et al., “Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 4, pp. 1437–1442, 2010.
[23]  H. Zhang, H. A. Pasolli, and E. Fuchs, “Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 6, pp. 2270–2275, 2011.
[24]  T. Tordjmann, “Hippo signalling: liver size regulation and beyond,” Clinics and Research in Hepatology and Gastroenterology, vol. 35, no. 5, pp. 344–346, 2011.
[25]  W. Bossuyt, C. L. Chen, Q. Chen et al., “An evolutionary shift in the regulation of the Hippo pathway between mice and flies,” Oncogene, vol. 8, 2013.
[26]  S. Habbig, M. P. Bartram, R. U. Müller et al., “NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway,” Journal of Cell Biology, vol. 193, no. 4, pp. 633–642, 2011.
[27]  A. Fernandez-L, M. Squatrito, P. Northcott et al., “Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation,” Oncogene, vol. 31, no. 15, pp. 1923–1937, 2012.
[28]  A. Genevet and N. Tapon, “The Hippo pathway and apico-basal cell polarity,” Biochemical Journal, vol. 436, no. 2, pp. 213–224, 2011.
[29]  H. Happé, A. M. van der Wal, W. N. Leonhard et al., “Altered Hippo signalling in polycystic kidney disease,” Journal of Pathology, vol. 224, no. 1, pp. 133–142, 2011.
[30]  M. Overholtzer, J. Zhang, G. A. Smolen et al., “Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12405–12410, 2006.
[31]  P. Wang, Y. Bai, B. Song et al., “PP1A-mediated dephosphorylation positively regulates YAP2 activity,” PLoS ONE, vol. 6, no. 9, Article ID e24288, 2011.
[32]  S. K. Lim, M. Orhant-Prioux, W. Toy, K. Y. Tan, and Y. P. Lim, “Tyrosine phosphorylation of transcriptional coactivator WW-domain binding protein 2 regulates estrogen receptor α function in breast cancer via the Wnt pathway,” FASEB Journal, vol. 25, no. 9, pp. 3004–3018, 2011.
[33]  S. T. Gee, S. L. Milgram, K. L. Kramer, F. L. Conlon, and S. A. Moody, “Yes-associated protein 65 (YAP) expands neural progenitors and regulates pax3 expression in the neural plate border zone,” PLoS ONE, vol. 6, no. 6, Article ID e20309, 2011.
[34]  L. Mishra, T. Banker, J. Murray et al., “Liver stem cells and hepatocellular carcinoma,” Hepatology, vol. 49, no. 1, pp. 318–329, 2009.
[35]  J. Y. Song, J.-H. Lee, C. O. Joe, D.-S. Lim, and J. H. Chung, “Retrotransposon-specific DNA hypomethylation and two-step loss-of-imprinting during WW45 haploinsufficiency-induced hepatocarcinogenesis,” Biochemical and Biophysical Research Communications, vol. 404, no. 2, pp. 728–734, 2011.
[36]  T. Oka, A. P. Schmitt, and M. Sudol, “Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP,” Oncogene, vol. 31, no. 1, pp. 128–134, 2012.
[37]  K. M. Hui, “Human hepatocellular carcinoma: expression profiles-based molecular interpretations and clinical applications,” Cancer Letters, vol. 286, no. 1, pp. 96–102, 2009.
[38]  T. Muramatsu, I. Imoto, T. Matsui et al., “YAP is a candidate oncogene for esophageal squamous cell carcinoma,” Carcinogenesis, vol. 32, no. 3, pp. 389–398, 2011.
[39]  W. Li, L. Wang, H. Katoh, R. Liu, P. Zheng, and Y. Liu, “Identification of a tumor suppressor relay between the FOXP3 and the Hippo pathways in breast and prostate cancers,” Cancer Research, vol. 71, no. 6, pp. 2162–2171, 2011.
[40]  X. Zhi, D. Zhao, Z. Zhou, R. Liu, and C. Chen, “YAP promotes breast cell proliferation and survival partially through stabilizing the KLF5 transcription factor,” American Journal of Pathology, vol. 180, pp. 2452–2461, 2012.
[41]  J. M. Kim, D. W. Kang, L. Z. Long et al., “Differential expression of Yes-associated protein is correlated with expression of cell cycle markers and pathologic TNM staging in non-small-cell lung carcinoma,” Human Pathology, vol. 42, no. 3, pp. 315–323, 2011.
[42]  W. Kang, J. H. M. Tong, A. W. H. Chan et al., “Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis,” Clinical Cancer Research, vol. 17, no. 8, pp. 2130–2139, 2011.
[43]  L. Zender, W. Xue, C. Cordón-Cardo et al., “Generation and analysis of genetically defined liver carcinomas derived from bipotential liver progenitors,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 70, pp. 251–261, 2005.
[44]  C. Baldwin, C. Garnis, L. Zhang, M. P. Rosin, and W. L. Lam, “Multiple microalterations detected at high frequency in oral cancer,” Cancer Research, vol. 65, no. 17, pp. 7561–7567, 2005.
[45]  A. Snijders-Keilholz, P. Ewing, C. Seynaeve, and C. W. Burger, “Primitive neuroectodermal tumor of the cervix uteri: a case report—changing concepts in therapy,” Gynecologic Oncology, vol. 98, no. 3, pp. 516–519, 2005.
[46]  M. Yokoyama, Y. Fujii, S. Yoshida et al., “Discarding antimicrobial prophylaxis for transurethral resection of bladder tumor: a feasibility study,” International Journal of Urology, vol. 16, no. 1, pp. 61–63, 2009.
[47]  D. M. Lam-Himlin, J. A. Daniels, M. F. Gayyed et al., “The hippo pathway in human upper gastrointestinal dysplasia and carcinoma: a novel oncogenic pathway,” International Journal of Gastrointestinal Cancer, vol. 37, no. 4, pp. 103–109, 2006.
[48]  A. A. Steinhardt, M. F. Gayyed, A. P. Klein et al., “Expression of Yes-associated protein in common solid tumors,” Human Pathology, vol. 39, no. 11, pp. 1582–1589, 2008.
[49]  J. Dong, G. Feldmann, J. Huang et al., “Elucidation of a universal size-control mechanism in Drosophila and mammals,” Cell, vol. 130, no. 6, pp. 1120–1133, 2007.
[50]  S. E. Hiemer and X. Varelas, “Stem cell regulation by the Hippo pathway,” Biochimica et Biophysica Acta, vol. 1830, pp. 2323–2334, 2013.
[51]  B. Zhao, X. Wei, W. Li et al., “Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control,” Genes and Development, vol. 21, no. 21, pp. 2747–2761, 2007.
[52]  N.-G. Kim, E. Koh, X. Chen, and B. M. Gumbiner, “E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 11930–11935, 2011.
[53]  X. Luo, “Snapshots of a hybrid transcription factor in the Hippo pathway,” Protein and Cell, vol. 1, no. 9, pp. 811–819, 2010.
[54]  X. Zhang, J. George, S. Deb et al., “The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene,” Oncogene, vol. 30, no. 25, pp. 2810–2822, 2011.
[55]  Y. Sekido, “Inactivation of Merlin in malignant mesothelioma cells and the Hippo signaling cascade dysregulation,” Pathology International, vol. 61, no. 6, pp. 331–344, 2011.
[56]  C. Yi and J. L. Kissil, “Merlin in organ size control and tumorigenesis: Hippo versus EGFR?” Genes and Development, vol. 24, no. 16, pp. 1673–1679, 2010.
[57]  S. Benhamouche, M. Curto, I. Saotome et al., “Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver,” Genes and Development, vol. 24, no. 16, pp. 1718–1730, 2010.
[58]  R. Tufail, M. Jorda, W. Zhao, I. Reis, and Z. Nawaz, “Loss of Yes-associated protein (YAP) expression is associated with estrogen and progesterone receptors negativity in invasive breast carcinomas,” Breast Cancer Research and Treatment, vol. 131, no. 3, pp. 743–750, 2012.
[59]  R. Urtasun, M. U. Latasa, M. I. Demartis et al., “Connective tissue growth factor autocriny in human hepatocellular carcinoma: oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation,” Hepatology, vol. 54, no. 6, pp. 2149–2158, 2011.
[60]  T. Zheng, J. Wang, H. Jiang, and L. Liu, “Hippo signaling in oval cells and hepatocarcinogenesis,” Cancer Letters, vol. 302, no. 2, pp. 91–99, 2011.
[61]  M. R. Silvis, B. T. Kreger, W.-H. Lien et al., “α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator yap1,” Science Signaling, vol. 4, no. 174, article ra33, 2011.
[62]  J. J. Westendorf, “Transcriptional co-repressors of Runx2,” Journal of Cellular Biochemistry, vol. 98, no. 1, pp. 54–64, 2006.
[63]  L. Zhang, D.-X. Ye, H.-Y. Pan et al., “Yes-associated protein promotes cell proliferation by activating Fos Related Activator-1 in oral squamous cell carcinoma,” Oral Oncology, vol. 47, no. 8, pp. 693–697, 2011.
[64]  H. Zhang, S. Wu, and D. Xing, “YAP accelerates Aβ25-35-induced apoptosis through upregulation of Bax expression by interaction with p73,” Apoptosis, vol. 16, no. 8, pp. 808–821, 2011.
[65]  M. Z. Xu, S. W. Chan, A. M. Liu et al., “AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma,” Oncogene, vol. 30, no. 10, pp. 1229–1240, 2011.
[66]  F. Kanai, P. A. Marignani, D. Sarbassova et al., “TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins,” The EMBO Journal, vol. 19, no. 24, pp. 6778–6791, 2000.
[67]  T. Mizuno, H. Murakami, M. Fujii et al., “YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes,” Oncogene, vol. 31, pp. 5117–5122, 2012.
[68]  X. Varelas, R. Sakuma, P. Samavarchi-Tehrani et al., “TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal,” Nature Cell Biology, vol. 10, no. 7, pp. 837–848, 2008.
[69]  L. Chen, P. G. Loh, and H. Song, “Structural and functional insights into the TEAD-YAP complex in the Hippo signaling pathway,” Protein and Cell, vol. 1, no. 12, pp. 1073–1083, 2010.
[70]  K. Wang, C. Degerny, M. Xu, and X.-J. Yang, “YAP, TAZ, and Yorkie: a conserved family of signal-responsive transcriptional coregulators in animal development and human disease,” Biochemistry and Cell Biology, vol. 87, no. 1, pp. 77–91, 2009.
[71]  H. S. Kang, Y.-S. Kim, G. ZeRuth et al., “Transcription factor Glis3, a novel critical player in the regulation of pancreatic β-cell development and insulin gene expression,” Molecular and Cellular Biology, vol. 29, no. 24, pp. 6366–6379, 2009.


comments powered by Disqus