Biomass-degrading enzymes are one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels. This work evaluates the effects of operational conditions on biomass-degrading multienzyme production by a selected strain of Aspergillus niger. The fungus was cultivated under solid-state fermentation (SSF) of soybean meal, using an instrumented lab-scale bioreactor equipped with an on-line automated monitoring and control system. The effects of air flow rate, inlet air relative humidity, and initial substrate moisture content on multienzyme (FPase, endoglucanase, and xylanase) production were evaluated using a statistical design methodology. Highest production of FPase (0.55?IU/g), endoglucanase (35.1?IU/g), and xylanase (47.7?IU/g) was achieved using an initial substrate moisture content of 84%, an inlet air humidity of 70%, and a flow rate of 24?mL/min. The enzymatic complex was then used to hydrolyze a lignocellulosic biomass, releasing 4.4?g/L of glucose after 36 hours of saccharification of 50?g/L pretreated sugar cane bagasse. These results demonstrate the potential application of enzymes produced under SSF, thus contributing to generate the necessary technological advances to increase the efficiency of the use of biomass as a renewable energy source. 1. Introduction Biomass-degrading enzymes are one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels. This is due to the large scale of the processes involved in biofuel production, and the considerable quantities of enzymes that are required. In addition to quantity, the quality of the enzymatic complex is an important issue, since a cocktail containing cellulases, hemicellulases, pectinases, and other accessory enzymes, acting in synergy in the degradation process, is necessary due to the high recalcitrance of plant biomass. This enzymatic complex is produced by a wide variety of microorganisms (bacteria and fungi); however, the aerobic fungi are known for their higher growth and protein secretion rates [1, 2]. Most commercial cellulases are produced by filamentous fungi of the genera Trichoderma and Aspergillus [3]. The use of solid-state fermentation (SSF) is particularly advantageous for enzyme production by filamentous fungi, since it simulates the natural habitat of the microorganisms [4]. From the environmental point of view, the main benefit of SSF is the ability to use agroindustrial waste (sugarcane bagasse, wheat bran, soybean meal, etc.) as a solid substrate that
References
[1]
L. R. Lynd, P. J. Weimer, W. H. Van Zyl, and I. S. Pretorius, “Microbial cellulose utilization: fundamentals and biotechnology,” Microbiology and Molecular Biology Reviews, vol. 66, no. 3, pp. 506–577, 2002.
[2]
D. B. Wilson, “Cellulases and biofuels,” Current Opinion in Biotechnology, vol. 20, no. 3, pp. 295–299, 2009.
[3]
Y. H. P. Zhang and L. R. Lynd, “Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems,” Biotechnology and Bioengineering, vol. 88, no. 7, pp. 797–824, 2004.
[4]
U. H?lker and J. Lenz, “Solid-state fermentation—are there any biotechnological advantages?” Current Opinion in Microbiology, vol. 8, no. 3, pp. 301–306, 2005.
[5]
M. Raimbault, “General and microbiological aspects of solid substrate fermentation,” Electronic Journal of Biotechnology, vol. 1, pp. 3–45, 1998.
[6]
C. S. Farinas, G. L. Vitcosque, R. F. Fonseca, V. B. Neto, and S. Couri, “Modeling the effects of solid state fermentation operating conditions on endoglucanase production using an instrumented bioreactor,” Industrial Crops and Products, vol. 34, no. 1, pp. 1186–1192, 2011.
[7]
Embrapa Soybean, Brazilian Agricultural Research Corporation, 2011, http://www.cnpso.embrapa.br.
[8]
G. L. Hartman, E. D. West, and T. K. Herman, “Crops that feed the World 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests,” Food Security, vol. 3, no. 1, pp. 5–17, 2011.
[9]
Y. Su, X. Zhang, Z. Hou, X. Zhu, X. Guo, and P. Ling, “Improvement of xylanase production by thermophilic fungus Thermomyces lanuginosus SDYKY-1 using response surface methodology,” New Biotechnology, vol. 28, no. 1, pp. 40–46, 2011.
[10]
G. M. Maciel, L. P. D. S. Vandenberghe, C. W. I. Haminiuk et al., “Xylanase production by Aspergillus niger LPB 326 in solid-state fermentation using statistical experimental designs,” Food Technology and Biotechnology, vol. 46, no. 2, pp. 183–189, 2008.
[11]
G. M. MacIel, L. P. De Souza Vandenberghe, R. C. Fendrich, B. E. Della, C. W. I. Haminiuk, and C. R. Soccol, “Study of some parameters which affect xylanase production: strain selection, enzyme extraction optimization, and influence of drying conditions,” Biotechnology and Bioprocess Engineering, vol. 14, no. 6, pp. 748–755, 2009.
[12]
J. X. Heck, S. H. Fl?res, P. F. Hertz, and M. A. Z. Ayub, “Statistical optimization of thermo-tolerant xylanase activity from Amazon isolated Bacillus circulans on solid-state cultivation,” Bioresource Technology, vol. 97, no. 15, pp. 1902–1906, 2006.
[13]
U. F. Rodríguez-Zú?iga, C. S. Farinas, V. B. Neto, S. Couri, and S. Crestana, “Aspergillus niger production of cellulases by solid-state fermentation,” Pesquisa Agropecuaria Brasileira, vol. 46, no. 8, pp. 912–919, 2011.
[14]
P. D. S. Delabona, R. D. P. B. Pirota, C. A. Codima, C. R. Tremacoldi, A. Rodrigues, and C. S. Farinas, “Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: biomass-degrading enzymes production and characterization,” Industrial Crops and Products, vol. 42, no. 1, pp. 236–242, 2013.
[15]
L. D. de Paris, F. B. Scheufele, A. T. Júnior, T. L. Guerreiro, and S. D. M. Hasan, “Enzyme complexes production by A. niger from soybean under solid state fermentation,” Acta Scientiarum, vol. 34, no. 2, pp. 193–200, 2012.
[16]
E. Rigo, J. L. Ninow, M. Di Luccio et al., “Lipase production by solid fermentation of soybean meal with different supplements,” LWT-Food Science and Technology, vol. 43, no. 7, pp. 1132–1137, 2010.
[17]
G. D. P. Vargas, H. Treichel, D. de Oliveira, S. C. Beneti, D. M. G. Freire, and M. Di Luccio, “Optimization of lipase production by Penicillium simplicissimum in soybean meal,” Journal of Chemical Technology and Biotechnology, vol. 83, no. 1, pp. 47–54, 2008.
[18]
C. Q. Liu, Q. H. Chen, B. Tang, H. Ruan, and G. Q. He, “Response surface methodology for optimizing the fermentation medium of alpha-galactosidase in solid-state fermentation,” Letters in Applied Microbiology, vol. 45, no. 2, pp. 206–212, 2007.
[19]
R. Raimbault and J. C. Germon, “Procédé d’enrichissement en protéines de produits comestibles solides,” French Patent 76-06-677, 1976.
[20]
S. Couri and A. X. Farias, “Genetic manipulation of Aspergillus niger for increased synthesis of pectinolytic enzymes,” Revista de Microbiologia, vol. 26, pp. 314–317, 1995.
[21]
E. R. Gouveia, R. T. D. Nascimento, A. M. Souto-Maior, and G. J. M. De Rocha, “Validation of methodology for the chemical characterization of sugar cane bagasse,” Quimica Nova, vol. 32, no. 6, pp. 1500–1503, 2009.
[22]
G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959.
[23]
T. K. Ghose, “Measurement of cellulase activities,” Pure and Applied Chemistry, vol. 59, pp. 257–268, 1987.
[24]
M. J. Bailey and K. Poutanen, “Production of xylanolytic enzymes by strains of Aspergillus,” Applied Microbiology and Biotechnology, vol. 30, no. 1, pp. 5–10, 1989.
[25]
J. Gao, H. Weng, D. Zhu, M. Yuan, F. Guan, and Y. Xi, “Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover,” Bioresource Technology, vol. 99, no. 16, pp. 7623–7629, 2008.
[26]
N. Bansal, R. Tewari, R. Soni, and S. K. Soni, “Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues,” Waste Management, vol. 32, no. 7, pp. 1341–1346, 2012.
[27]
R. Soni, A. Nazir, and B. S. Chadha, “Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse,” Industrial Crops and Products, vol. 31, no. 2, pp. 277–283, 2010.
[28]
M. Narra, G. Dixit, and A. R. Shah, “Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw,” Bioresource Technology, vol. 121, pp. 355–361, 2012.
[29]
G. S. Dhillon, S. Kaur, S. K. Brar, and M. Verma, “Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation,” Industrial Crops and Products, vol. 38, no. 1, pp. 6–13, 2012.
[30]
R. K. Sukumaran, R. R. Singhania, G. M. Mathew, and A. Pandey, “Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production,” Renewable Energy, vol. 34, no. 2, pp. 421–424, 2009.
[31]
S. W. Kang, Y. S. Park, J. S. Lee, S. I. Hong, and S. W. Kim, “Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass,” Bioresource Technology, vol. 91, no. 2, pp. 153–156, 2004.
[32]
D. Mamma, E. Kourtoglou, and P. Christakopoulos, “Fungal multienzyme production on industrial by-products of the citrus-processing industry,” Bioresource Technology, vol. 99, no. 7, pp. 2373–2383, 2008.
[33]
M. C. T. Damaso, S. C. Terzi, M. E. Fraga, and S. Couri, “Selection of cellulolytic fungi isolated from diverse substrates,” Brazilian Archives of Biology and Technology, vol. 55, no. 4, pp. 513–520, 2012.
[34]
S. Anuradha Jabasingh and C. Valli Nachiyar, “Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using response surface methodology,” Industrial Crops and Products, vol. 34, no. 3, pp. 1564–1571, 2011.
[35]
T. R. Shamala and K. R. Sreekantiah, “Production of cellulases and D-xylanase by some selected fungal isolates,” Enzyme and Microbial Technology, vol. 8, no. 3, pp. 178–182, 1986.
[36]
T. C. dos Santos, N. B. Santana, and M. Franco, “Optimization of productions of cellulolytic enzymes by Aspergillus niger using residue of mango a substrate,” Ciencia Rural, vol. 41, no. 12, pp. 2210–2216, 2011.
[37]
C. S. Farinas, M. M. Loyo, A. Baraldo, P. W. Tardioli, V. B. Neto, and S. Couri, “Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature,” New Biotechnology, vol. 27, no. 6, pp. 810–815, 2010.
[38]
S. Couri, S. Da Costa Terzi, G. A. Saavedra Pinto, S. Pereira Freitas, and A. C. Augusto Da Costa, “Hydrolytic enzyme production in solid-state fermentation by Aspergillus niger 3T5B8,” Process Biochemistry, vol. 36, no. 3, pp. 255–261, 2000.
[39]
M. R. Spier, A. L. Woiciechowski, L. A. J. Letti et al., “Monitoring fermentation parameters during phytase production in column-type bioreactor using a new data acquisition system,” Bioprocess and Biosystems Engineering, vol. 33, no. 9, pp. 1033–1041, 2010.
[40]
K. S. M. S. Raghavarao, T. V. Ranganathan, and N. G. Karanth, “Some engineering aspects of solid-state fermentation,” Biochemical Engineering Journal, vol. 13, no. 2-3, pp. 127–135, 2003.
[41]
K. Kovacs, S. Macrelli, G. Szakacs, and G. Zacchi, “Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house,” Biotechnology for Biofuels, vol. 2, article 14, 2009.
[42]
A. P. de Souza, D. C. C. Leite, S. Pattahil, M. G. Hahn, and M. S. Buckeridge, “Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production,” Bioenergy Research. In press.
[43]
L. M. F. Gottschalk, R. A. Oliveira, and E. P. D. S. Bon, “Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse,” Biochemical Engineering Journal, vol. 51, no. 1-2, pp. 72–78, 2010.