All Title Author
Keywords Abstract

Cell Shape and Cardiosphere Differentiation: A Revelation by Proteomic Profiling

DOI: 10.1155/2013/730874

Full-Text   Cite this paper   Add to My Lib


Stem cells (embryonic stem cells, somatic stem cells such as neural stem cells, and cardiac stem cells) and cancer cells are known to aggregate and form spheroid structures. This behavior is common in undifferentiated cells and may be necessary for adapting to certain conditions such as low-oxygen levels or to maintain undifferentiated status in microenvironments including stem cell niches. In order to decipher the meaning of this spheroid structure, we established a cardiosphere clone (CSC-21E) derived from the rat heart which can switch its morphology between spheroid and nonspheroid. Two forms, floating cardiospheres and dish-attached flat cells, could be switched reversibly by changing the cell culture condition. We performed differential proteome analysis studies and obtained protein profiles distinct between spherical forms and flat cells. From protein profiling analysis, we found upregulation of glycolytic enzymes in spheroids with some stress proteins switched in expression levels between these two forms. Evidence has been accumulating that certain chaperone/stress proteins are upregulated in concert with cellular changes including proliferation and differentiation. We would like to discuss the possible mechanism of how these aggregates affect cell differentiation and/or other cellular functions. 1. Introduction Two epoch accomplishments in the first decade of 21st century are changing the scope of biomedical research. The first was the completion of the human genome project [1], which enabled the onset of “Omics” or the integrative approach (System Biology) [2]. The second was the discovery of adult stem cells in human [3] followed by induction of pluripotency by Yamanaka factors (Oct3/4, Sox, Klf4, and c-Myc) in both mouse and human somatic cells [4, 5]. Adult stem cells are undifferentiated cells found throughout the body after development. They have the ability to self-renew indefinitely and have the developmental potential to generate many other cell types due to cell fate switching induced by extracellular environmental signals [3]. Plasticity of stem cells as well as the induction and reprogramming of somatic cells ignited the hope of discovering cellular therapy for the regeneration of damaged body parts. The revelation of the involvement of extracellular factors in switching cell types resulted in paradigm shift from “genetic determinism”, the paradigm that all biological processes follow the one-way instruction stored in genomes to an “environment-genome interaction” understanding. Studies on the regulatory molecular mechanisms


[1]  F. S. Collins, E. S. Lander, J. Rogers, and R. H. Waterson, “Finishing the euchromatic sequence of the human genome,” Nature, vol. 431, no. 7011, pp. 931–945, 2004.
[2]  H. Kitano, “Systems biology: a brief overview,” Science, vol. 295, no. 5560, pp. 1662–1664, 2002.
[3]  M. Raff, “Adult stem cell plasticity: fact or artifact?” Annual Review of Cell and Developmental Biology, vol. 19, pp. 1–22, 2003.
[4]  K. Takahashi and S. Yamanaka, “Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006.
[5]  K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007.
[6]  S. P. Gygi, Y. Rochon, B. R. Franza, and R. Aebersold, “Correlation between protein and mRNA abundance in yeast,” Molecular and Cellular Biology, vol. 19, no. 3, pp. 1720–1730, 1999.
[7]  R. D. Unwin and A. D. Whetton, “Systematic proteome and transcriptome analysis of stem cell populations,” Cell Cycle, vol. 5, no. 15, pp. 1587–1591, 2006.
[8]  H. Baharvand, A. Fathi, D. van Hoof, and G. H. Salekdeh, “Concise review: trends in stem cell proteomics,” Stem Cells, vol. 25, no. 8, pp. 1888–1903, 2007.
[9]  L. Ma, B. Sun, L. Hood, and Q. Tian, “Molecular profiling of stem cells,” Clinica Chimica Acta, vol. 378, no. 1-2, pp. 24–32, 2007.
[10]  D. van Hoof, R. Passier, D. Ward-van Oostwaard et al., “A quest for human and mouse embryonic stem cell-specific proteins,” Molecular and Cellular Proteomics, vol. 5, no. 7, pp. 1261–1273, 2006.
[11]  E. Messina, L. de Angelis, G. Frati et al., “Isolation and expansion of adult cardiac stem cells from human and murine heart,” Circulation Research, vol. 95, no. 9, pp. 911–921, 2004.
[12]  A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003.
[13]  R. R. Smith, L. Barile, H. C. Cho et al., “Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens,” Circulation, vol. 115, no. 7, pp. 896–908, 2007.
[14]  L. Barile, E. Messina, A. Giacomello, and E. Marbán, “Endogenous Cardiac Stem Cells,” Progress in Cardiovascular Diseases, vol. 50, no. 1, pp. 31–48, 2007.
[15]  S. Miyamoto, N. Kawaguchi, G. M. Ellison, R. Matsuoka, T. Shin'Oka, and H. Kurosawa, “Characterization of long-term cultured c-kit+ cardiac stem cells derived from adult rat hearts,” Stem Cells and Development, vol. 19, no. 1, pp. 105–116, 2010.
[16]  N. Kawaguchi, A. J. Smith, C. D. Waring et al., “ -4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling,” PLoS ONE, vol. 5, no. 12, Article ID e14297, 2010.
[17]  N. Kawaguchi, R. Nakao, M. Yamaguchi, D. Ogawa, and R. Matsuoka, “TGF-β superfamily regulates a switch that mediates differentiation either into adipocytes or myocytes in left atrium derived pluripotent cells (LA-PCS),” Biochemical and Biophysical Research Communications, vol. 396, no. 3, pp. 619–625, 2010.
[18]  M. K. Hasan, Y. Komoike, S.-I. Tsunesumi et al., “Myogenic differentiation in atrium-derived adult cardiac pluripotent cells and the transcriptional regulation of GATA4 and myogenin on ANP promoter,” Genes to Cells, vol. 15, no. 5, pp. 439–454, 2010.
[19]  H. Hosseinkhani, M. Hosseinkhani, S. Hattori, R. Matsuoka, and N. Kawaguchi, “Micro and nano-scale in vitro 3D culture system for cardiac stem cells,” Journal of Biomedical Materials Research A, vol. 94, no. 1, pp. 1–8, 2010.
[20]  M. Machida, Y. Takagaki, R. Matsuoka, and N. Kawaguchi, “Proteomic comparison of spherical aggregates and adherent cells of cardiac stem cells,” International Journal of Cardiology, vol. 153, no. 3, pp. 296–305, 2011.
[21]  N. Kawaguchi, “Adult cardiac-derived stem cells: differentiation and survival regulators,” Vitamins and Hormones, vol. 87, pp. 111–125, 2011.
[22]  N. Kawaguchi, “Stem cells for cardiac regeneration and possible roles of the transforming growth factor-βsuperfamily,” BioMolecular Concepts, vol. 3, no. 1, pp. 99–106, 2011.
[23]  N. Kawaguchi, E. Hayama, Y. Furutani, and Y. Nakanishi, “Prospective in vitro models of channelopathies and cardiomyopathies,” Stem Cells International, vol. 2012, Article ID 439219, 10 pages, 2012.
[24]  N. Kawaguchi and Y. Nakanishi, “Cardiomyocyte regeneration,” Cells, vol. 2, no. 1, pp. 67–82, 2013.
[25]  Y. Takagaki, H. Yamagishi, and R. Matsuoka, “Factors Involved in Signal Transduction During Vertebrate Myogenesis,” International Review of Cell and Molecular Biology, vol. 296, pp. 187–272, 2012.
[26]  A. M. Hierlihy, P. Seale, C. G. Lobe, M. A. Rudnicki, and L. A. Megeney, “The post-natal heart contains a myocardial stem cell population,” FEBS Letters, vol. 530, no. 1–3, pp. 239–243, 2002.
[27]  H. Oh, S. B. Bradfute, T. D. Gallardo et al., “Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12313–12318, 2003.
[28]  K. Matsuura, T. Nagai, N. Nishigaki et al., “Adult Cardiac Sca-1-positive Cells Differentiate into Beating Cardiomyocytes,” Journal of Biological Chemistry, vol. 279, no. 12, pp. 11384–11391, 2004.
[29]  A. Linke, P. Müller, D. Nurzynska et al., “Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 25, pp. 8966–8971, 2005.
[30]  D. R. Davis, Y. Zhang, R. R. Smith et al., “Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue,” PLoS ONE, vol. 4, no. 9, Article ID e7195, 2009.
[31]  D. C. Andersen, P. Andersen, M. Schneider, H. B. Jensen, and S. P. Sheikh, “Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential,” Stem Cells, vol. 27, no. 7, pp. 1571–1581, 2009.
[32]  D. R. Davis, E. Kizana, J. Terrovitis et al., “Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 2, pp. 312–321, 2010.
[33]  P. V. Johnston, T. Sasano, K. Mills et al., “Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy,” Circulation, vol. 120, no. 12, pp. 1075–1083, 2009.
[34]  I. Chimenti, R. R. Smith, T.-S. Li et al., “Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice,” Circulation Research, vol. 106, no. 5, pp. 971–980, 2010.
[35]  K. Cheng, T.-S. Li, K. Malliaras, D. R. Davis, Y. Zhang, and E. Marbán, “Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction,” Circulation Research, vol. 106, no. 10, pp. 1570–1581, 2010.
[36]  K. Malliaras, T.-S. Li, D. Luthringer et al., “Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells,” Circulation, vol. 125, no. 1, pp. 100–112, 2012.
[37]  S.-T. Lee, A. J. White, S. Matsushita et al., “Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction,” Journal of the American College of Cardiology, vol. 57, no. 4, pp. 455–465, 2011.
[38]  A. J. White, R. R. Smith, S. Matsushita, et al., “Intrinsic cardiac origin of human cardiosphere-derived cells,” European Heart Journal, vol. 34, no. 1, pp. 68–75, 2013.
[39]  R. Lautam?ki, J. Terrovitis, M. Bonios et al., “Perfusion defect size predicts engraftment but not early retention of intra-myocardially injected cardiosphere-derived cells after acute myocardial infarction,” Basic Research in Cardiology, vol. 106, no. 6, pp. 1379–1386, 2011.
[40]  C. A. Carr, D. J. Stuckey, J. J. Tan et al., “Cardiosphere-derived cells improve function in the infarcted rat heart for at least 16 weeks—an mri study,” PLoS ONE, vol. 6, no. 10, Article ID e25669, 2011.
[41]  J. Ye, A. Boyle, H. Shih et al., “Sca-1+ cardiosphere-derived cells are enriched for isl1-expressing cardiac precursors and improve cardiac function after myocardial injury,” PLoS ONE, vol. 7, no. 1, Article ID e30329, 2012.
[42]  R. R. Makkar, R. R. Smith, K. Cheng et al., “Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial,” The Lancet, vol. 379, no. 9819, pp. 895–904, 2012.
[43]  D. Torella, G. M. Ellison, B. Nadal-Ginard, and C. Indolfi, “Cardiac stem and progenitor cell biology for regenerative medicine,” Trends in Cardiovascular Medicine, vol. 15, no. 6, pp. 229–236, 2005.
[44]  V. L. T. Ballard and J. M. Edelberg, “Stem cells and the regeneration of the aging cardiovascular system,” Circulation Research, vol. 100, no. 8, pp. 1116–1127, 2007.
[45]  M. Rubart and L. J. Field, “Stem cell differentiation: cardiac repair,” Cells Tissues Organs, vol. 188, no. 1-2, pp. 202–211, 2008.
[46]  R. R. Smith, L. Barile, E. Messina, and E. Marbán, “Stem cells in the heart: what's the buzz all about?-Part 1: preclinical considerations,” Heart Rhythm, vol. 5, no. 5, pp. 749–757, 2008.
[47]  H. Reinecke, E. Minami, W.-Z. Zhu, and M. A. Laflamme, “Cardiogenic differentiation and transdifferentiation of progenitor cells,” Circulation Research, vol. 103, no. 10, pp. 1058–1071, 2008.
[48]  D. Torella, C. Indolfi, D. F. Goldspink, and G. M. Ellison, “Cardiac stem cell-based myocardial regeneration: towards a translational approach,” Cardiovascular and Hematological Agents in Medicinal Chemistry, vol. 6, no. 1, pp. 53–59, 2008.
[49]  G. R. Martin and M. J. Evans, “Differentiation of clonal teratocarcinoma cells: formation of embryoid bodies in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 4, pp. 1441–1445, 1975.
[50]  O. N. Suslov, V. G. Kukekov, T. N. Ignatova, and D. A. Steindler, “Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14506–14511, 2002.
[51]  R. Sutherland, “Spheroids in cancer research,” Cancer Research, vol. 41, no. 7, pp. 2980–2984, 1981.
[52]  D. Khaitan, S. Chandna, M. B. Arya, and B. S. Dwarakanath, “Establishment and characterization of multicellular spheroids from a human glioma cell line; implications for tumor therapy,” Journal of Translational Medicine, vol. 4, article 12, 2006.
[53]  G. Francia, S. Man, B. Teicher, L. Grasso, and R. S. Kerbel, “Gene expression analysis of tumor spheroids reveals a role for suppressed DNA mismatch repair in multicellular resistance to alkylating agents,” Molecular and Cellular Biology, vol. 24, no. 15, pp. 6837–6849, 2004.
[54]  M. T. Armstrong, D. Y. Lee, and P. B. Armstrong, “Regulation of proliferation of the fetal myocardium,” Developmental Dynamics, vol. 219, no. 2, pp. 226–236, 2000.
[55]  C. Bearzi, M. Rota, T. Hosoda et al., “Human cardiac stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 35, pp. 14068–14073, 2007.
[56]  L. T. Shenje, L. J. Field, C. A. Pritchard et al., “Lineage tracing of cardiac explant derived cells,” PLoS ONE, vol. 3, no. 4, Article ID e1929, 2008.
[57]  Y. L. Tang, W. Zhu, M. Cheng et al., “Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression,” Circulation Research, vol. 104, no. 10, pp. 1209–1216, 2009.
[58]  D. Torella, G. M. Ellison, S. Méndez-Ferrer, B. Ibanez, and B. Nadal-Ginard, “Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration,” Nature Clinical Practice Cardiovascular Medicine, vol. 3, supplement 1, pp. S8–S13, 2006.
[59]  D. Torella, G. M. Ellison, I. Karakikes, and B. Nadal-Ginard, “Growth-factor-mediated cardiac stem cell activation in myocardial regeneration,” Nature Clinical Practice Cardiovascular Medicine, vol. 4, supplement 1, pp. S46–S51, 2007.
[60]  G. M. Ellison, D. Torella, I. Karakikes, and B. Nadal-Ginard, “Myocyte death and renewal: modern concepts of cardiac cellular homeostasis,” Nature Clinical Practice Cardiovascular Medicine, vol. 4, supplement 1, pp. S52–S59, 2007.
[61]  G. M. Ellison, D. Torella, I. Karakikes et al., “Acute β-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells,” Journal of Biological Chemistry, vol. 282, no. 15, pp. 11397–11409, 2007.
[62]  D. Torella, G. M. Ellison, I. Karakikes, and B. Nadal-Ginard, “Cardiovascular development: towards biomedical applicability—resident cardiac stem cells,” Cellular and Molecular Life Sciences, vol. 64, no. 6, pp. 661–673, 2007.
[63]  A. Leri, J. Kajstura, P. Anversa, and W. H. Frishman, “Myocardial regeneration and stem cell repair,” Current Problems in Cardiology, vol. 33, no. 3, pp. 91–153, 2008.
[64]  K. G. A. Rani, K. Jayakumar, G. Srinivas, R. R. Nair, and C. C. Kartha, “Isolation of ckit-positive cardiosphere-forming cells from human atrial biopsy,” Asian Cardiovascular and Thoracic Annals, vol. 16, no. 1, pp. 50–56, 2008.
[65]  J. Lennartsson and L. R?nnestrand, “Stem cell factor receptor/c-Kit: from basic science to clinical implications,” Physiological Reviews, vol. 92, no. 4, pp. 1619–1649, 2012.
[66]  Y. N. Tallini, S. G. Kai, M. Craven et al., “c-kit expression identifies cardiovascular precursors in the neonatal heart,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 6, pp. 1808–1813, 2009.
[67]  J. C. Young, V. R. Agashe, K. Siegers, and F. U. Hartl, “Pathways of chaperone-mediated protein folding in the cytosol,” Nature Reviews Molecular Cell Biology, vol. 5, no. 10, pp. 781–791, 2004.
[68]  E. Prinsloo, M. M. Setati, V. M. Longshaw, and G. L. Blatch, “Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation?” BioEssays, vol. 31, no. 4, pp. 370–377, 2009.
[69]  G. Saretzki, T. Walter, S. Atkinson et al., “Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells,” Stem Cells, vol. 26, no. 2, pp. 455–464, 2008.
[70]  G. Saretzki, L. Armstrong, A. Leake, M. Lako, and T. Von Zglinicki, “Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells,” Stem Cells, vol. 22, no. 6, pp. 962–971, 2004.
[71]  F. Q. Schafer and G. R. Buettner, “Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1191–1212, 2001.
[72]  B. Chen, D. Zhong, and A. Monteiro, “Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms,” BMC Genomics, vol. 7, article 156, 2006.
[73]  J. D. Shao, H. Li, Y. Bian, and Y. Zhong, “Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 554–559, 2008.
[74]  N. Mesaeli, K. Nakamura, E. Zvaritch et al., “Calreticulin is essential for cardiac development,” Journal of Cell Biology, vol. 144, no. 5, pp. 857–868, 1999.
[75]  S. E. Moss and R. O. Morgan, “The annexins,” Genome Biology, vol. 5, no. 4, article 219, 2004.
[76]  C. Soti, C. Pál, B. Papp, and P. Csermely, “Molecular chaperones as regulatory elements of cellular networks,” Current Opinion in Cell Biology, vol. 17, no. 2, pp. 210–215, 2005.
[77]  F. Guilak, D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen, “Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix,” Cell Stem Cell, vol. 5, no. 1, pp. 17–26, 2009.
[78]  R. Sordella, W. Jiang, G.-C. Chen, M. Curto, and J. Settleman, “Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis,” Cell, vol. 113, no. 2, pp. 147–158, 2003.
[79]  B. A. Bryan, D. C. Mitchell, L. Zhao et al., “Modulation of muscle regeneration, myogenesis, and adipogenesis by the Rho family guanine nucleotide exchange factor GEFT,” Molecular and Cellular Biology, vol. 25, no. 24, pp. 11089–11101, 2005.
[80]  R. Schofield, “The relationship between the spleen colony-forming cell and the haemopoietic stem cell. A hypothesis,” Blood Cells, vol. 4, no. 1-2, pp. 7–25, 1978.
[81]  M. R. Alison and S. Islam, “Attributes of adult stem cells,” Journal of Pathology, vol. 217, no. 2, pp. 144–160, 2009.
[82]  S. M. Dellatore, A. S. Garcia, and W. M. Miller, “Mimicking stem cell niches to increase stem cell expansion,” Current Opinion in Biotechnology, vol. 19, no. 5, pp. 534–540, 2008.
[83]  H. Kondoh, M. E. Lleonart, Y. Nakashima et al., “A high glycolytic flux supports the proliferative potential of murine embryonic stem cells,” Antioxidants and Redox Signaling, vol. 9, no. 3, pp. 293–299, 2007.
[84]  A. Mohyeldin, T. Garzón-Muvdi, and A. Qui?ones-Hinojosa, “Oxygen in stem cell biology: a critical component of the stem cell niche,” Cell Stem Cell, vol. 7, no. 2, pp. 150–161, 2010.
[85]  O. Toussaint, G. Weemaels, F. Debacq-Chainiaux, K. Scharffetter-Kochanek, and M. Wlaschek, “Artefactual effects of oxygen on cell culture models of cellular senescence and stem cell biology,” Journal of Cellular Physiology, vol. 226, no. 2, pp. 315–321, 2011.
[86]  M. C. Brahimi-Horn and J. Pouysségur, “Oxygen, a source of life and stress,” FEBS Letters, vol. 581, no. 19, pp. 3582–3591, 2007.
[87]  M. C. Simon and B. Keith, “The role of oxygen availability in embryonic development and stem cell function,” Nature Reviews Molecular Cell Biology, vol. 9, no. 4, pp. 285–296, 2008.
[88]  T. Ezashi, P. Das, and R. M. Roberts, “Low O2 tensions and the prevention of differentiation of hES cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 13, pp. 4783–4788, 2005.
[89]  R. K. Bruick, “Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor,” Genes and Development, vol. 17, no. 21, pp. 2614–2623, 2003.
[90]  R. H. Wenger, “Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression,” FASEB Journal, vol. 16, no. 10, pp. 1151–1162, 2002.
[91]  H. C. Beck, J. Petersen, O. Felthaus, G. Schmalz, and C. Morsczeck, “Comparison of neurosphere-like cell clusters derived from dental follicle precursor cells and retinal Müller cells,” Neurochemical Research, vol. 36, no. 11, pp. 2002–2007, 2011.
[92]  H. R. Kumar, X. Zhong, D. J. Hoelz et al., “Three-dimensional neuroblastoma cell culture: proteomic analysis between monolayer and multicellular tumor spheroids,” Pediatric Surgery International, vol. 24, no. 11, pp. 1229–1234, 2008.
[93]  L. Gaedtke, L. Thoenes, C. Culmsee, B. Mayer, and E. Wagner, “Proteomic analysis reveals differences in protein expression in spheroid versus monolayer cultures of low-passage colon carcinoma cells,” Journal of Proteome Research, vol. 6, no. 11, pp. 4111–4118, 2007.
[94]  E.-K. Lee, H. Cho, and C.-W. Kim, “Proteomic analysis of cancer stem cells in human prostate cancer cells,” Biochemical and Biophysical Research Communications, vol. 412, no. 2, pp. 279–285, 2011.
[95]  A. Fathi, M. Pakzad, A. Taei et al., “Comparative proteome and transcriptome analyses of embryonic stem cells during embryoid body-based differentiation,” Proteomics, vol. 9, no. 21, pp. 4859–4870, 2009.


comments powered by Disqus