Several studies have evidenced variations in plasma glycosaminoglycans content in physiological and pathological conditions. In normal human plasma GAGs are present mainly as undersulfated chondroitin sulfate (CS). The aim of the present study was to evaluate possible correlations between plasma CS level/structure and the presence/typology of carotid atherosclerotic lesion. Plasma CS was purified from 46 control subjects and 47 patients undergoing carotid endarterectomy showing either a soft or a hard plaque. The concentration and structural characteristics of plasma CS were assessed by capillary electrophoresis of constituent unsaturated fluorophore-labeled disaccharides. Results showed that the concentration of total CS isomers was increased by 21.4% ( ) in plasma of patients, due to a significant increase of undersulfated CS. Consequently, in patients the plasma CS charge density was significantly reduced with respect to that of controls. After sorting for plaque typology, we found that patients with soft plaques and those with hard ones differently contribute to the observed changes. In plasma from patients with soft plaques, the increase in CS content was not associated with modifications of its sulfation pattern. On the contrary, the presence of hard plaques was associated with CS sulfation pattern modifications in presence of quite normal total CS isomers levels. These results suggest that the plasma CS content and structure could be related to the presence and the typology of atherosclerotic plaque and could provide a useful diagnostic tool, as well as information on the molecular mechanisms responsible for plaque instability. 1. Introduction Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous elements in medium and large arteries. Plaque rupture and thrombosis are the most important clinical complication in the pathogenesis of acute coronary syndromes and peripheral vascular disease [1, 2]. Although numerous risk factors such as hypertension, diabetes, and hyperlipidemia are thought to play a role in the development and progression of this pathology [3], the mechanisms underlying plaque formation and progression are still largely unknown. Abnormal expression and structural modifications of arterial chondroitin sulfate proteoglycans (CS-PGs) have been implicated in atherosclerosis progression [4–6]. Arterial CS-PGs are markedly increased in early atherosclerotic lesions, participating in lipid retention, modification, and accumulation. Furthermore, CS-PGs play a key role in inflammation processes
References
[1]
P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002.
[2]
E. Lutgens, R. J. Van Suylen, B. C. Faber et al., “Atherosclerotic plaque rupture: local or systemic process?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 12, pp. 2123–2130, 2003.
[3]
A. J. Lusis, “Atherosclerosis,” Nature, vol. 407, no. 6801, pp. 233–241, 2000.
[4]
A. D. Theocharis, D. A. Theocharis, G. De Luca, A. Hjerpe, and N. K. Karamanos, “Compositional and structural alterations of chondroitin and dermatan sulfates during the progression of atherosclerosis and aneurysmal dilatation of the human abdominal aorta,” Biochimie, vol. 84, no. 7, pp. 667–674, 2002.
[5]
A. D. Theocharis, I. Tsolakis, G. N. Tzanakakis, and N. K. Karamanos, “Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression,” Advances in Pharmacology, vol. 53, pp. 281–295, 2006.
[6]
D. E. Karangelis, I. Kanakis, A. P. Asimakopoulou et al., “Glycosaminoglycans as key molecules in atherosclerosis: the role of versican and hyaluronan,” Current Medicinal Chemistry, vol. 17, no. 33, pp. 4018–4026, 2010.
[7]
M. Formato, M. Farina, R. Spirito et al., “Evidence for a proinflammatory and proteolytic environment in plaques from endarterectomy segments of human carotid arteries,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 1, pp. 129–135, 2004.
[8]
M. Contini, S. Pacini, L. Ibba-Manneschi et al., “Modification of plasma glycosaminoglycans in long distance runners,” British Journal of Sports Medicine, vol. 38, no. 2, pp. 134–137, 2004.
[9]
L. Calabrò, C. Musolino, G. Spatari, R. Vinci, and A. Calatroni, “Increased concentration of circulating acid glycosaminoglycans in chronic lymphocytic leukaemia and essential thrombocythaemia,” Clinica Chimica Acta, vol. 269, no. 2, pp. 185–199, 1998.
[10]
C. Friman, D. Nordstrom, and I. Eronen, “Plasma glycosaminoglycans in systemic lupus erythematosus,” Journal of Rheumatology, vol. 14, no. 6, pp. 1132–1134, 1988.
[11]
S. L. Ramsay, P. J. Meikle, and J. J. Hopwood, “Determination of monosaccharides and disaccharides in mucopolysaccharidoses patients by electrospray ionisation mass spectrometry,” Molecular Genetics and Metabolism, vol. 78, no. 3, pp. 193–204, 2003.
[12]
S. Tomatsu, M. A. Gutierrez, T. Ishimaru et al., “Heparan sulfate levels in mucopolysaccharidoses and mucolipidoses,” Journal of Inherited Metabolic Disease, vol. 28, no. 5, pp. 743–757, 2005.
[13]
H. Toyoda, S. Kobayashi, S. Sakamoto, T. Toida, and T. Imanari, “Structural analysis of a low-sulfated chondroitin sulfate chain in human urinary trypsin inhibitor,” Biological and Pharmaceutical Bulletin, vol. 16, no. 9, pp. 945–947, 1993.
[14]
L. Zhuo, V. C. Hascall, and K. Kimata, “Inter-α-trypsin inhibitor, a covalent protein-glycosaminoglycan- protein complex,” Journal of Biological Chemistry, vol. 279, no. 37, pp. 38079–38082, 2004.
[15]
E. Fries and A. M. Blom, “Bikunin—not just a plasma proteinase inhibitor,” International Journal of Biochemistry and Cell Biology, vol. 32, no. 2, pp. 125–137, 2000.
[16]
A. C. Gray-Weale, J. C. Graham, J. R. Burnett, K. Byrne, and R. J. Lusby, “Carotid artery atheroma: comparison of preoperative B-mode ultrasound appearance with carotid endarterectomy specimen pathology,” Journal of Cardiovascular Surgery, vol. 29, no. 6, pp. 676–681, 1988.
[17]
A. Zinellu, S. Pisanu, E. Zinellu et al., “A novel LIF-CE method for the separation of hyalurnan- and chondroitin sulfate-derived disaccharides: application to structural and quantitative analyses of human plasma low- and high-charged chondroitin sulfate isomers,” Electrophoresis, vol. 28, no. 14, pp. 2439–2447, 2007.
[18]
F. Lamari, A. Theocharis, A. Hjerpe, and N. K. Karamanos, “Ultrasensitive capillary electrophoresis of sulfated disaccharides in chondroitin/dermatan sulfates by laser-induced fluorescence after derivatization with 2-aminoacridone,” Journal of Chromatography B, vol. 730, no. 1, pp. 129–133, 1999.
[19]
T. Bitter and H. M. Muir, “A modified uronic acid carbazole reaction,” Analytical Biochemistry, vol. 4, no. 4, pp. 330–334, 1962.
[20]
N. Volpi and F. Maccari, “Microdetermination of chondroitin sulfate in normal human plasma by fluorophore-assisted carbohydrate electrophoresis (FACE),” Clinica Chimica Acta, vol. 356, no. 1-2, pp. 125–133, 2005.
[21]
F. Pasquali, C. Oldani, M. Ruggiero, L. Magnelli, V. Chiarugi, and S. Vannucchi, “Interaction between endogenous circulating sulfated-glycosaminoglycans and plasma proteins,” Clinica Chimica Acta, vol. 192, no. 1, pp. 19–27, 1990.
[22]
A. Calatroni, R. Vinci, and A. M. Ferlazzo, “Characteristics of the interactions between acid glycosaminoglycans and protein in normal human plasma as revealed by the behaviour of the protein-polysaccharide complexes in ultrafiltration and chromatographic procedures,” Clinica Chimica Acta, vol. 206, no. 3, pp. 167–180, 1992.
[23]
G. M. Cherchi, M. Formato, P. Demuro, M. Masserini, I. Varani, and G. DeLuca, “Modifications of low density lipoprotein induced by the interaction with human plasma glycosaminoglycan-protein complexes,” Biochimica et Biophysica Acta, vol. 1212, no. 3, pp. 345–352, 1994.
[24]
A. Bassols and J. Massague, “Transforming growth factor β regulates the expression and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans,” Journal of Biological Chemistry, vol. 263, no. 6, pp. 3039–3045, 1988.
[25]
E. Schonherr, H. T. Jarvelainen, L. J. Sandell, and T. N. Wight, “Effects of platelet-derived growth factor and transforming growth factor-β1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells,” Journal of Biological Chemistry, vol. 266, no. 26, pp. 17640–17647, 1991.
[26]
E. Tufvesson and G. Westergren-Thorsson, “Alteration of proteoglycan synthesis in human lung fibroblasts induced by interleukin-1β and tumor necrosis factor-α,” Journal of Cellular Biochemistry, vol. 77, no. 2, pp. 298–309, 2000.
[27]
M. L. M. Gr?nholdt, B. G. Nordestgaard, T. V. Schroeder, S. Vorstrup, and H. Sillesen, “Ultrasonic echolucent carotid plaques predict future strokes,” Circulation, vol. 104, no. 1, pp. 68–73, 2001.
[28]
J. F. Polak, L. Shemanski, D. H. O'Leary et al., “Hypoechoic plaque at US of the carotid artery: an independent risk factor for incident stroke in adults aged 65 years or older,” Radiology, vol. 208, no. 3, pp. 649–654, 1998.
[29]
A. D. Giannoukas, G. S. Sfyroeras, M. Griffin, V. Saleptsis, G. A. Antoniou, and A. N. Nicolaides, “Association of plaque echostructure and cardiovascular risk factors with symptomatic carotid artery disease,” Vasa - Journal of Vascular Diseases, vol. 38, no. 4, pp. 357–364, 2009.
[30]
K. Sames, The Role of Proteoglycans and Glycosaminoglycans in Aging, Karger, Hamburg, Germany, 1994.
[31]
“Glycosaminoglycans of blood,” in Mucopolysaccharides (glycosaminoglycans) of Body Fluids in Health and Disease, R. Varma and R. S. Varma, Eds., pp. 449–508, Walter de Gruyter, Berlin, Germany, 1983.
[32]
P. W. Larking, “Total glycosaminoglycans in the plasma of adults: effects of age and gender, and relationship to plasma lipids: A preliminary study,” Biochemical Medicine and Metabolic Biology, vol. 42, no. 3, pp. 192–197, 1989.
[33]
K. B. Komosińska-Vassev, K. Winsz-Szczotka, K. Kuznik-Trocha, P. Olczyk, and K. Olczyk, “Age-related changes of plasma glycosaminoglycans,” Clinical Chemistry and Laboratory Medicine, vol. 46, no. 2, pp. 219–224, 2008.
[34]
N. Volpi and F. Maccari, “Chondroitin sulfate in normal human plasma is modified depending on the age. Its evaluation in patients with pseudoxanthoma elasticum,” Clinica Chimica Acta, vol. 370, no. 1-2, pp. 196–200, 2006.
[35]
D. Karangelis, A. Asimakopoulou, I. Kanakis et al., “Monitoring serum chondroitin sulfate levels in patients submitted to coronary artery bypass surgery,” Biomedical Chromatography, vol. 25, no. 7, pp. 748–750, 2011.
[36]
C. Mizon, C. Mairie, M. Balduyck, E. Hachulla, and J. Mizon, “The chondroitin sulfate chain of bikunin-containing proteins in the inter-α-inhibitor family increases in size in inflammatory diseases,” European Journal of Biochemistry, vol. 268, no. 9, pp. 2717–2724, 2001.
[37]
C. Capon, C. Mizon, J. Lemoine, P. Rodié-Talbère, and J. Mizon, “In acute inflammation, the chondroitin-4 sulphate carried by bikunin is not only longer; It is also undersulphated,” Biochimie, vol. 85, no. 1-2, pp. 101–107, 2003.
[38]
R. Albertini, P. Ramos, A. Giessauf, A. Passi, G. De Luca, and H. Esterbauer, “Chondroitin 4-sulphate exhibits inhibitory effect during Cu2+-mediated LDL oxidation,” FEBS Letters, vol. 403, no. 2, pp. 154–158, 1997.
[39]
R. Albertini, G. De Luca, A. Passi, R. Moratti, and P. M. Abuja, “Chondroitin-4-sulfate protects high-density lipoprotein against copper- dependent oxidation,” Archives of Biochemistry and Biophysics, vol. 365, no. 1, pp. 143–149, 1999.
[40]
H. Arai, S. Kashiwagi, Y. Nagasaka, K. Uchida, Y. Hoshii, and K. Nakamura, “Oxidative modification of apolipoprotein E in human very-low-density lipoprotein and its inhibition by glycosaminoglycans,” Archives of Biochemistry and Biophysics, vol. 367, no. 1, pp. 1–8, 1999.
[41]
R. Albertini, A. Passi, P. M. Abuja, and G. De Luca, “The effect of glycosaminoglycans and proteoglycans on lipid peroxidation,” International journal of molecular medicine, vol. 6, no. 2, pp. 129–136, 2000.
[42]
G. M. Campo, A. Avenoso, S. Campo et al., “Hyaluronic acid and chondroitin-4-sulphate treatment reduces damage in carbon tetrachloride-induced acute rat liver injury,” Life Sciences, vol. 74, no. 10, pp. 1289–1305, 2004.
[43]
G. M. Campo, A. Avenoso, A. D'Ascola et al., “Purified human plasma glycosaminoglycans limit oxidative injury induced by iron plus ascorbate in skin fibroblast cultures,” Toxicology in Vitro, vol. 19, no. 5, pp. 561–572, 2005.