全部 标题 作者 关键词 摘要
Algebra  2013

# On Quasi- -Dense Submodules and -Pure Envelopes of QTAG Modules

Abstract:

A module over an associative ring with unity is a QTAG module if every finitely generated submodule of any homomorphic image of is a direct sum of uniserial modules. There are many fascinating properties of QTAG modules of which -pure submodules and high submodules are significant. A submodule is quasi- -dense in if is -divisible, for every -pure submodule of containing Here we study these submodules and obtain some interesting results. Motivated by -neat envelope, we also define -pure envelope of a submodule as the -pure submodule if has no direct summand containing We find that -pure envelopes of have isomorphic basic submodules, and if is the direct sum of uniserial modules, then all -pure envelopes of are isomorphic. 1. Introduction All the rings considered here are associative with unity, and right modules are unital modules. An element is uniform, if is a nonzero uniform (hence uniserial) module and for any -module with a unique decomposition series, denotes its decomposition length. For a uniform element , , and are the exponent and height of in , respectively. denotes the submodule of generated by the elements of height at least , and is the submodule of generated by the elements of exponent at most . ？ is -divisible if , and it is -reduced if it does not contain any -divisible submodule. In other words, it is free from the elements of infinite height. The modules , form a neighbourhood system of zero giving rise to -topology. The closure of a submodule is defined as , and it is closed with respect to -topology if . A submodule of is -pure in if , for every integer . For a limit ordinal , , for all ordinals , and it is -pure in if for all ordinals . A module is summable if , where is the set of all elements of which are not in , where is the length of . A submodule is nice [1, Definition 2.3] in , if for all ordinals ; that is, every coset of modulo may be represented by an element of the same height. The cardinality of the minimal generating set of is denoted by . For all ordinals , is the - invariant of and it is equal to . For a module , there is a chain of submodules , for some ordinal . , where is the submodule of . Singh  proved that the results which hold for TAG modules also hold good for modules. 2. Quasi- -Dense Submodules In , we studied semi- -pure submodules which are not -pure but contained in -pure submodules. Now we investigate the submodules such that is -divisible for every -pure submodule , containing . These modules are called quasi- -dense submodules. We start with the following. Definition 1. A submodule of is quasi-

References

  M. Z. Khan, “On basic submodules,” Tamkang Journal of Mathematics, vol. 10, no. 1, pp. 24–29, 1979.  S. Singh, “Some decomposition theorems in abelian groups and their generalizations,” in Ring Theory, Proc. Ohio Univ. Cong., pp. 183–189, Marcel Dekker, New York, NY, USA, 1977.  A. Mehdi and F. Sikander, “Some characterizations of submodules of QTAG-modules,” Scientia. Series A, vol. 18, pp. 39–46, 2009.  F. Mehdi and A. Mehdi, “ -high submodules and -topology,” South East Asian Journal of Mathematics and Mathematical Sciences, vol. 1, no. 1, pp. 83–88, 2002.  M. Z. Khan, “ -divisible and basic submodules,” Tamkang Journal of Mathematics, vol. 10, no. 2, pp. 197–203, 1979.  A. Mehdi and M. Z. Khan, “On -neat envelopes and basic submodules,” Tamkang Journal of Mathematics, vol. 16, no. 2, pp. 71–76, 1985.  M. Z. Khan and A. Zubair, “On quasi -pure submodules of QTAG-modules,” International Journal of Mathematics and Mathematical Sciences, vol. 24, no. 7, pp. 493–499, 2000.  A. Mehdi and M. Z. Khan, “On closed modules,” Kyungpook Mathematical Journal, vol. 24, no. 1, pp. 45–50, 1984.

Full-Text