All Title Author
Keywords Abstract


Elucidating the Interacting Domains of Chandipura Virus Nucleocapsid Protein

DOI: 10.1155/2013/594319

Full-Text   Cite this paper   Add to My Lib

Abstract:

The nucleocapsid (N) protein of Chandipura virus (CHPV) plays a crucial role in viral life cycle, besides being an important structural component of the virion through proper organization of its interactions with other viral proteins. In a recent study, the authors had mapped the associations among CHPV proteins and shown that N protein interacts with four of the viral proteins: N, phosphoprotein (P), matrix protein (M), and glycoprotein (G). The present study aimed to distinguish the regions of CHPV N protein responsible for its interactions with other viral proteins. In this direction, we have generated the structure of CHPV N protein by homology modeling using SWISS-MODEL workspace and Accelrys Discovery Studio client 2.55 and mapped the domains of N protein using PiSQRD. The interactions of N protein fragments with other proteins were determined by ZDOCK rigid-body docking method and validated by yeast two-hybrid and ELISA. The study revealed a unique binding site, comprising of amino acids 1–30 at the N terminus of the nucleocapsid protein (N1) that is instrumental in its interactions with N, P, M, and G proteins. It was also observed that N2 associates with N and G proteins while N3 interacts with N, P, and M proteins. 1. Introduction Chandipura virus (CHPV) is a recently recognized emerging human pathogen [1–3] of the genus Vesiculovirus and family Rhabdoviridae [4]. The ~11?kb genome of CHPV [5] is encapsidated by nucleocapsid (N) protein and serves as a template for both replication and transcription. The transcription of the genome by viral encoded RNA-dependent RNA polymerase (RdRp; L protein) produces five capped and polyadenylated mRNAs which code for five proteins nucleocapsid protein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and large protein (L) in sequential order and in decreasing amounts [6]. Interactions among these proteins are essential for functioning of key processes during virus replication and pathogenesis. However, only few details of the molecular functions of these viral proteins that orchestrate the virus life cycle are known. The N protein plays a pivotal role in virus biology by virtue of its interactions with other viral proteins. The interaction of monomeric N protein with P maintains it in the encapsidation competent soluble (active) form [7, 8]. In its active form, N protein tightly wraps the RNA genome and maintains the structural integrity along with the template function of the negative strand genome RNA. Within the virion, this encapsidated RNA (N-RNA) template is associated with the

References

[1]  B. L. Rao, A. Basu, N. S. Wairagkar et al., “A large outbreak of acute encephalitis with high fatality rate in children in Andhra Pradesh, India, in 2003, associated with Chandipura virus,” The Lancet, vol. 364, no. 9437, pp. 869–874, 2004.
[2]  M. S. Chadha, V. A. Arankalle, R. S. Jadi et al., “An outbreak of Chandipura virus encephalitis in the eastern districts of Gujarat State, India,” American Journal of Tropical Medicine and Hygiene, vol. 73, no. 3, pp. 566–570, 2005.
[3]  B. V. Tandale, S. S. Tikute, V. A. Arankalle et al., “Chandipura virus: a major cause of acute encephalitis in children in North Telangana, Andhra Pradesh, India,” Journal of Medical Virology, vol. 80, no. 1, pp. 118–124, 2008.
[4]  A. K. Banerjee, “Transcription and replication of rhabdoviruses,” Microbiological Reviews, vol. 51, no. 1, pp. 66–87, 1987.
[5]  S. Basak, A. Mondal, S. Polley, S. Mukhopadhyay, and D. Chattopadhyay, “Reviewing chandipura: a vesiculovirus in human epidemics,” Bioscience Reports, vol. 27, no. 4-5, pp. 275–298, 2007.
[6]  L. E. Iverson and J. K. Rose, “Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription,” Cell, vol. 23, no. 2, pp. 477–484, 1981.
[7]  A. Majumder, S. Basak, T. Raha, S. P. Chowdhury, D. Chattopadhyay, and S. Roy, “Effect of osmolytes and chaperone-like action of P-protein on folding of nucleocapsid protein of chandipura virus,” The Journal of Biological Chemistry, vol. 276, no. 33, pp. 30948–30955, 2001.
[8]  M. Chen, T. Ogino, and A. K. Banerjee, “Interaction of vesicular stomatitis virus P and N proteins: Identification of two overlapping domains at the N terminus of P that are involved in N 0-P complex formation and encapsidation of viral genome RNA,” Journal of Virology, vol. 81, no. 24, pp. 13478–13485, 2007.
[9]  A. K. Gupta and A. K. Banerjee, “Expression and purification of vesicular stomatitis virus N-P complex from Escherichia coli: role in genome RNA transcription and replication in vitro,” Journal of Virology, vol. 71, no. 6, pp. 4264–4271, 1997.
[10]  T. J. Green and M. Luo, “Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 28, pp. 11713–11718, 2009.
[11]  C. E. Mire, D. Dube, S. E. Delos, J. M. White, and M. A. Whitt, “Glycoprotein-dependent acidification of vesicular stomatitis virus enhances release of matrix protein,” Journal of Virology, vol. 83, no. 23, pp. 12139–12150, 2009.
[12]  A. Mondal, R. Bhattacharya, T. Ganguly et al., “Elucidation of functional domains of Chandipura virus Nucleocapsid protein involved in oligomerization and RNA binding: implication in viral genome encapsidation,” Virology, vol. 407, no. 1, pp. 33–42, 2010.
[13]  A. Mondal, A. Roy, S. Sarkar, J. Mukherjee, T. Ganguly, and D. Chattopadhyay, “Interaction of chandipura virus n and p proteins: Identification of two mutually exclusive domains of n involved in interaction with p,” PLoS ONE, vol. 7, no. 4, Article ID e34623, 2012.
[14]  K. Kumar, J. Rana, R. Sreejith et al., “Intraviral protein interactions of Chandipura Virus,” Archives of Virology, vol. 157, no. 10, pp. 1949–1957, 2012.
[15]  Y. Zhang, “I-TASSER server for protein 3D structure prediction,” BMC Bioinformatics, vol. 9, article 40, 2008.
[16]  A. Roy, A. Kucukural, and Y. Zhang, “I-TASSER: a unified platform for automated protein structure and function prediction,” Nature protocols, vol. 5, no. 4, pp. 725–738, 2010.
[17]  D. Xu and Y. Zhang, “Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization,” Biophysical Journal, vol. 101, no. 10, pp. 2525–2534, 2011.
[18]  D. Xu and Y. Zhang, “Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field,” Proteins, vol. 80, pp. 1715–1735, 2012.
[19]  F. Ferrè and P. Clote, “DiANNA: a web server for disulfide connectivity prediction,” Nucleic Acids Research, vol. 33, no. 2, pp. W230–W232, 2005.
[20]  R. Potestio, F. Pontiggia, and C. Micheletti, “Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins in rigid subunits,” Biophysical Journal, vol. 96, no. 12, pp. 4993–5002, 2009.
[21]  R. Chen, L. Li, and Z. Weng, “ZDOCK: an initial-stage protein-docking algorithm,” Proteins, vol. 52, no. 1, pp. 80–87, 2003.
[22]  R. Chen and Z. Weng, “A novel shape complementarity scoring function for protein-protein docking,” Proteins, vol. 51, no. 3, pp. 397–408, 2003.
[23]  L. Li, R. Chen, and Z. Weng, “RDOCK: refinement of Rigid-body Protein Docking Predictions,” Proteins, vol. 53, no. 3, pp. 693–707, 2003.
[24]  C. Zhang, G. Vasmatzis, J. L. Cornette, and C. DeLisi, “Determination of atomic desolvation energies from the structures of crystallized proteins,” Journal of Molecular Biology, vol. 267, no. 3, pp. 707–726, 1997.
[25]  R. Sreejith, J. Rana, N. Dudha et al., “Mapping of interactions among Chikungunya virus nonstructural proteins,” Virus Research, vol. 169, no. 1, pp. 231–236, 2012.
[26]  R. Sreejith, S. Gulati, and S. Gupta, “Interfacial Interactions involved in the biological assembly of Chandipura virus nucleocapsid protein,” Virus Genes, vol. 46, no. 3, pp. 535–537, 2013.
[27]  Z. Itzhaki, “Domain-domain interactions underlying herpesvirus-human protein-protein interaction networks,” PLoS ONE, vol. 6, no. 7, Article ID e21724, 2011.
[28]  K. R. Hurst, C. A. Koetzner, and P. S. Masters, “Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein,” Journal of Virology, vol. 83, no. 14, pp. 7221–7234, 2009.
[29]  M. Mavrakis, S. Méhouas, E. Réal et al., “Rabies virus chaperone: identification of the phosphoprotein peptide that keeps nucleoprotein soluble and free from non-specific RNA,” Virology, vol. 349, no. 2, pp. 422–429, 2006.
[30]  X. Zhang, T. J. Green, J. Tsao, S. Qiu, and M. Luo, “Role of intermolecular interactions of vesicular stomatitis virus nucleoprotein in RNA encapsidation,” Journal of Virology, vol. 82, no. 2, pp. 674–682, 2008.
[31]  J. Curran, J.-B. Marq, and D. Kolakofsky, “An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication,” Journal of Virology, vol. 69, no. 2, pp. 849–855, 1995.

Full-Text

comments powered by Disqus