Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS)). Our findings are summarized as follows. (i) Spatiotemporal variation patterns of sensible heat flux (H) and evapotranspiration (ET) under the land cover scenarios (A2a or B2a) and climate change scenario (A1B) are unanimous. (ii) Both H and ET take on a single peak pattern, and the peak occurs in June or July. (iii) Based on the regional interannual variability analysis, H displays a downward trend (10%) and ET presents an increasing trend (15%). (iv) The annual average H and ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change. 1. Introduction Global climate change characterized by global warming has put significant impacts on natural ecosystems and human society [1, 2]. According to estimates, global climate will very likely continue to become warm in the next 100 years [3]. Many observed natural and biological systems’ abnormal changes, such as species extinction, sea level rising, and frequent extreme weather events, as well as changes in plant and animal biological characteristics, have been linked to climate warming [4, 5]. Therefore, a reasonable estimate of future climate change has become an important issue for scientists, public, and policy makers and a hot topic for improving the understanding of the climate system and the accuracy of future climate change projections. Climate warming intensifies hydrothermal circulation as well and causes temporal-spatial variations of water and heat resources. It will further increase the frequency of hydrological extreme events and change the regional water and heat balances. In turn, water circulation and heat transport are important processes of each circle in the entire climate system. They directly affect the local climate, environments, and ecosystems and therefore play very important roles in
References
[1]
G.-R. Walther, E. Post, P. Convey et al., “Ecological responses to recent climate change,” Nature, vol. 416, no. 6879, pp. 389–395, 2002.
[2]
D. D. Zhang, P. Brecke, H. F. Lee, Y.-Q. He, and J. Zhang, “Global climate change, war, and population decline in recent human history,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19214–19219, 2007.
[3]
Intergovernmental Panel on Climate Change, “Climate change 2007: the physical science basis,” in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning et al., Eds., p. 996, Cambridge University Press, Cambridge, UK, 2007.
[4]
G. A. Meehl, W. M. Washington, W. D. Collins et al., “How much more global warming and sea level rise?” Science, vol. 307, no. 5716, pp. 1769–1772, 2005.
[5]
S. Planton, M. Déqué, F. Chauvin, and L. Terray, “Expected impacts of climate change on extreme climate events,” Comptes Rendus Geoscience, vol. 340, no. 9-10, pp. 564–574, 2008.
[6]
G. A. Ban-Weiss, G. Bala, L. Cao, J. Pongratz, and K. Caldeira, “Climate forcing and response to idealized changes in surface latent and sensible heat,” Environmental Research Letters, vol. 6, no. 3, Article ID 034032, 2011.
[7]
A. H. Goldstein, N. E. Hultman, J. M. Fracheboud et al., “Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA),” Agricultural and Forest Meteorology, vol. 101, no. 2-3, pp. 113–129, 2000.
[8]
K. B. Wilson, D. D. Baldocchi, M. Aubinet et al., “Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites,” Water Resources Research, vol. 38, no. 12, pp. 1294–1305, 2002.
[9]
L. Gu, T. Meyers, S. G. Pallardy et al., “Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site,” Journal of Geophysical Research D, vol. 111, no. D16, Article ID D16102, 2006.
[10]
P. Krishnan, T. P. Meyers, R. L. Scott, L. Kennedy, and M. Heuer, “Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America,” Agricultural and Forest Meteorology, vol. 153, pp. 31–44, 2012.
[11]
P. Hotaek, Y. Takeshi, and O. Takeshi, “Responses of Energy Budget and Evapotranspiration to Climate Change in Eastern Siberia, Evapotranspiration,” Prof. Leszek Labedzki (Ed.), InTech, 2011, http://www.intechopen.com/books/evapotranspiration/responses-of-energy-budget-and-evapotranspiration-to-climate-change-in-eastern-siberia.
[12]
P. Campra, M. Garcia, Y. Canton, and A. Palacios-Orueta, “Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain,” Journal of Geophysical Research D, vol. 113, no. D18, Article ID D18109, 2008.
[13]
M. Georgescu, D. B. Lobell, and C. B. Field, “Direct climate effects of perennial bioenergy crops in the United States,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 11, pp. 4307–4312, 2011.
[14]
J. J. Feddema, K. W. Oleson, G. B. Bonan et al., “Atmospheric science: the importance of land-cover change in simulating future climates,” Science, vol. 310, no. 5754, pp. 1674–1678, 2005.
[15]
T. M. Saitoh, I. Tamagawa, H. Muraoka, and H. Kondo, “An analysis of summer evapotranspiration based on multi-year observations including extreme climatic conditions over a cool temperate evergreen coniferous forest Takayama, Japan,” Hydrological Processes, vol. 27, no. 23, pp. 3341–3349, 2013.
[16]
R. A. Pielke Sr., G. Marland, R. A. Betts et al., “The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases,” Philosophical Transactions of the Royal Society A, vol. 360, no. 1797, pp. 1705–1719, 2002.
[17]
B. Timbal and J. M. Arblaster, “Land cover change as an additional forcing to explain the rainfall decline in the south west of Australia,” Geophysical Research Letters, vol. 33, no. 7, Article ID L07717, 2006.
[18]
F. W. S. Correia, R. C. S. Alvalá, and A. O. Manzi, “Modeling the impacts of land cover change in Amazonia: a regional climate model (RCM) simulation study,” Theoretical and Applied Climatology, vol. 93, no. 3-4, pp. 225–244, 2008.
[19]
D. Li, M. Pan, Z. Cong, L. Zhang, and E. Wood, “Vegetation control on water and energy balance within the Budyko framework,” Water Resource Research, vol. 49, no. 2, pp. 969–976, 2013.
[20]
B. Chen, J. M. Chen, and W. Ju, “Remote sensing-based ecosystem-atmosphere simulation scheme (EASS)-Model formulation and test with multiple-year data,” Ecological Modelling, vol. 209, no. 2–4, pp. 277–300, 2007.
[21]
D. D. Baldocchi and D. R. Bowling, “Modelling the discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales,” Plant, Cell and Environment, vol. 26, no. 2, pp. 231–244, 2003.
[22]
S. Jia, W. Zhu, A. Lu, and T. Yan, “A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China,” Remote Sensing of Environment, vol. 115, no. 12, pp. 3069–3079, 2011.
[23]
H. Aksoy, Z. F. Toprak, A. Aytek, and N. E. ünal, “Stochastic generation of hourly mean wind speed data,” Renewable Energy, vol. 29, no. 14, pp. 2111–2131, 2004.
[24]
T. X. Yue, Z. M. Fan, and J. Y. Liu, “Scenarios of land cover in China,” Global and Planetary Change, vol. 55, no. 4, pp. 317–342, 2007.
[25]
Y. L. Xu and R. Jones, “Validating PRECIS with ECMWF reanalysis data over China,” Chinese Journal of Agrometeorology, vol. 25, no. 1, pp. 5–9, 2004.
[26]
F. D. Wang, Y. L. Xu, and T. Li, “Long term climate numerical simulation over china by regional climate model PRECIS,” Chinese Journal of Agrometeorology, vol. 31, no. 3, pp. 327–332, 2010.
[27]
S. W. Gou, Y. X. Zhang, and Y. L. Xu, “Analysis of climate resource changes during maize growth period in Ningxia under SRES A1B scenario,” Chinese Journal of Eco-Agriculture, vol. 20, no. 10, pp. 1394–1403, 2012.
[28]
X. Z. Shi, D. S. Yu, E. D. Warner et al., “Soil database of 1:1, 000, 000 digital soil survey and reference system of the chinese genetic soil classification system,” Soil Survey Horizons, vol. 45, pp. 129–136, 2004.
[29]
V. Mishra, K. A. Cherkauer, D. Niyogi et al., “A regional scale assessment of land use/land cover and climatic changes on water and energy cycle in the upper Midwest United States,” International Journal of Climatology, vol. 30, no. 13, pp. 2025–2044, 2010.
[30]
T. E. Twine, C. J. Kucharik, and J. A. Foley, “Effects of land cover change on the energy and water balance of the Mississippi River basin,” Journal of Hydrometeorology, vol. 5, pp. 640–655, 2004.