All Title Author
Keywords Abstract

A Nonlocal Model for Carbon Nanotubes under Axial Loads

DOI: 10.1155/2013/360935

Full-Text   Cite this paper   Add to My Lib


Various beam theories are formulated in literature using the nonlocal differential constitutive relation proposed by Eringen. A new variational framework is derived in the present paper by following a consistent thermodynamic approach based on a nonlocal constitutive law of gradient-type. Contrary to the results obtained by Eringen, the new model exhibits the nonlocality effect also for constant axial load distributions. The treatment can be adopted to get new benchmarks for numerical analyses. 1. Introduction Carbon nanotubes (CNTs) are a topic of major interest both from theoretical and applicative points of view. This subject is widely investigated in literature to describe small-scale effects [1–4], vibration and buckling [5–13], and nonlocal finite element analysis [14–18]. A comprehensive review on applications of nonlocal elastic models for CNTs is reported in [19] and therein references. Buckling of triple-walled CNTs under temperature fields is dealt with in [20]. An alternative methodology is based on an atomistic-based approach [21] which predicts the positions of atoms in terms of interactive forces and boundary conditions. The standard approach to analyze CNTs under axial loads consists in solving an inhomogeneous second-order ordinary differential equation providing the axial displacement field, see, for example, [22]. The known term of the differential equation is the sum of two contributions. The former describes the local effects linearly depending on the axial load. The latter characterizes the small-scale effects depending linearly on the second derivative along the rod axis of the axial load. This model is thus not able to evaluate small-scale effects due to, constant axial loads per unit length. This approach, commonly adopted in literature, is based on the following nonlocal linearly elastic constitutive law proposed by Eringen [23]: where is a material constant, is the internal length, is the Young modulus, is the normal stress, the apex is second derivative along the rod axis, and is the axial elongation. Indeed, integrating on the rod cross section domain and imposing that the axial force is equal to the resultant of normal stress field we get the differential equation where , with being first derivative along the rod axis of the axial displacement field , where is the rod length and denotes the cross section area. Since the equilibrium prescribes that the first derivative of is opposite to the axial load , we infer the well-known differential equation (see, e.g., [7]) as follows: Note that the nonlocal contribution vanishes for


[1]  Q. Wang and K. M. Liew, “Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures,” Physics Letters A, vol. 363, no. 3, pp. 236–242, 2007.
[2]  M. Aydogdu, “A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration,” Physica E, vol. 41, no. 9, pp. 1651–1655, 2009.
[3]  ?. Civalek and ?. Demir, “Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory,” Applied Mathematical Modelling, vol. 35, no. 5, pp. 2053–2067, 2011.
[4]  M. A. De Rosa and C. Franciosi, “A simple approach to detect the nonlocal effects in the static analysis of Euler-Bernoulli and Timoshenko beams,” Mechanics Research Communications, vol. 48, pp. 66–69, 2013.
[5]  M. Aydogdu, “Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity,” Mechanics Research Communications, vol. 41, pp. 34–40, 2012.
[6]  M. A. Kazemi-Lari, S. A. Fazelzadeh, and E. Ghavanloo, “Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation,” Physica E, vol. 44, no. 7-8, pp. 1623–1630, 2012.
[7]  H.-T. Thai and T. P. Vo, “A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams,” International Journal of Engineering Science, vol. 54, pp. 58–66, 2012.
[8]  M. A. Eltaher, S. A. Emam, and F. F. Mahmoud, “Static and stability analysis of nonlocal functionally graded nanobeams,” Composite Structures, vol. 96, pp. 82–88, 2013.
[9]  S. A. Emam, “A general nonlocal nonlinear model for buckling of nanobeams,” Applied Mathematical Modelling, vol. 37, no. 10-11, pp. 6929–6939, 2013.
[10]  B. Fang, Y.-X. Zhen, C.-P. Zhang, and Y. Tang, “Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory,” Applied Mathematical Modelling, vol. 37, no. 3, pp. 1096–1107, 2013.
[11]  S. A. M. Ghannadpour, B. Mohammadi, and J. Fazilati, “Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method,” Composite Structures, vol. 96, pp. 584–589, 2013.
[12]  M. ?im?ek and H. H. Yurtcu, “Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory,” Composite Structures, vol. 97, pp. 378–386, 2013.
[13]  B. L. Wang and K. F. Wang, “Vibration analysis of embedded nanotubes using nonlocal continuum theory,” Composites B, vol. 47, pp. 96–101, 2013.
[14]  J. K. Phadikar and S. C. Pradhan, “Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates,” Computational Materials Science, vol. 49, no. 3, pp. 492–499, 2010.
[15]  C. M. C. Roque, A. J. M. Ferreira, and J. N. Reddy, “Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method,” International Journal of Engineering Science, vol. 49, no. 9, pp. 976–984, 2011.
[16]  F. F. Mahmoud, M. A. Eltaher, A. E. Alshorbagy, and E. I. Meletis, “Static analysis of nanobeams including surface effects by nonlocal finite elements,” Journal of Mechanical Science and Technology, vol. 26, no. 11, pp. 3555–3563, 2012.
[17]  S. C. Pradhan, “Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory,” Finite Elements in Analysis and Design, vol. 50, pp. 8–20, 2012.
[18]  M. A. Eltaher, A. E. Alshorbagy, and F. F. Mahmoud, “Vibration analysis of Euler-Bernoulli nanobeams by using finite element method,” Applied Mathematical Modelling, vol. 37, no. 7, pp. 4787–4797, 2013.
[19]  B. Arash and Q. Wang, “A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes,” Computational Materials Science, vol. 51, no. 1, pp. 303–313, 2012.
[20]  Y. Yan, W. Q. Wang, and L. X. Zhang, “Nonlocal effect on axially compressed buckling of triple-walled carbon nanotubes under temperature field,” Applied Mathematical Modelling, vol. 34, no. 11, pp. 3422–3429, 2010.
[21]  R. Rafiee and R. M. Moghadam, “On the modeling of carbon nanotubes: a critical review,” Composites B, vol. 56, pp. 435–4490, 2014.
[22]  J. N. Reddy, “Nonlocal theories for bending, buckling and vibration of beams,” International Journal of Engineering Science, vol. 45, no. 2-8, pp. 288–307, 2007.
[23]  A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves,” Journal of Applied Physics, vol. 54, no. 9, pp. 4703–4710, 1983.
[24]  F. Marotti de Sciarra, “Variational formulations, convergence and stability properties in nonlocal elastoplasticity,” International Journal of Solids and Structures, vol. 45, no. 7-8, pp. 2322–2354, 2008.
[25]  G. Romano, M. Diaco, and R. Barretta, “Variational formulation of the first principle of continuum thermodynamics,” Continuum Mechanics and Thermodynamics, vol. 22, no. 3, pp. 177–187, 2010.
[26]  F. Marotti De Sciarra, “Hardening plasticity with nonlocal strain damage,” International Journal of Plasticity, vol. 34, pp. 114–138, 2012.
[27]  G. Romano and R. Barretta, “Covariant hypo-elasticity,” European Journal of Mechanics A, vol. 30, no. 6, pp. 1012–1023, 2011.
[28]  G. Romano and R. Barretta, “On Euler's stretching formula in continuum mechanics,” Acta Mechanica, vol. 224, no. 1, pp. 211–230, 2013.
[29]  G. Romano and R. Barretta, “Geometric constitutive theory and frame invariance,” International Journal of Non-Linear Mechanics, vol. 51, pp. 75–86, 2013.
[30]  G. Romano, R. Barretta, and M. Diaco, “Geometric continuum mechanics,” Meccanica, 2013.
[31]  R. D. Mindlin, “Micro-structure in linear elasticity,” Archive for Rational Mechanics and Analysis, vol. 16, no. 1, pp. 51–78, 1964.
[32]  F. Marotti de Sciarra, “Novel variational formulations for nonlocal plasticity,” International Journal of Plasticity, vol. 25, no. 2, pp. 302–331, 2009.
[33]  F. Marotti de Sciarra, “On non-local and non-homogeneous elastic continua,” International Journal of Solids and Structures, vol. 46, no. 3-4, pp. 651–676, 2009.
[34]  F. Marotti de Sciarra, “A nonlocal model with strain-based damage,” International Journal of Solids and Structures, vol. 46, no. 22-23, pp. 4107–4122, 2009.


comments powered by Disqus

Contact Us


微信:OALib Journal