Geoneutrinos, electron antineutrinos from natural radioactive decays inside the Earth, bring to the surface unique information about our planet. The new techniques in neutrino detection opened a door into a completely new interdisciplinary field of neutrino geoscience. We give here a broad geological introduction highlighting the points where the geoneutrino measurements can give substantial new insights. The status-of-art of this field is overviewed, including a description of the latest experimental results from KamLAND and Borexino experiments and their first geological implications. We performed a new combined Borexino and KamLAND analysis in terms of the extraction of the mantle geo-neutrino signal and the limits on the Earth's radiogenic heat power. The perspectives and the future projects having geo-neutrinos among their scientific goals are also discussed. 1. Introduction The newly born interdisciplinar field of neutrino geoscience takes the advantage of the technologies developed by large-volume neutrino experiments and of the achievements of the elementary particle physics in order to study the Earth interior with new probe geoneutrinos. Geoneutrinos are electron antineutrinos released in the decays of radioactive elements with lifetimes comparable with the age of the Earth and distributed through the Earth’s interior. The radiogenic heat released during the decays of these Heat Producing Elements (HPE) is in a well fixed ratio with the total mass of HPE inside the Earth. Geoneutrinos bring to the Earth’s surface an instant information about the distribution of HPE. Thus, it is, in principle, possible to extract from measured geoneutrino fluxes several geological information completely unreachable by other means. This information concerns the total abundance and distribution of the HPE inside the Earth and thus the determination of the fraction of radiogenic heat contribute to the total surface heat flux. Such a knowledge is of critical importance for understanding complex processes such as the mantle convection, the plate tectonics, and the geodynamo (the process of generation of the Earth’s magnetic field), as well as the Earth formation itself. Currently, only two large-volume, liquid-scintillator neutrino experiments, KamLAND in Japan and Borexino in Italy, have been able to measure the geoneutrino signal. Antineutrinos can interact only through the weak interactions. Thus, the cross-section of the inverse-beta decay detection interaction: is very low. Even a typical flux of the order of geoneutrinos ? leads to only a hand-full number of
References
[1]
C. Rolfs and W. Rodney, Cauldron in the Cosmos: Nuclear Astrophysics, University of Chicago Press, 1988.
[2]
G. Fiorentini, M. Lissia, and F. Mantovani, “Geo-neutrinos and Earth's interior,” Physics Reports, vol. 453, no. 5-6, pp. 117–172, 2007.
[3]
S. Enomoto, Neutrino geophysics and observation of geo-neutrinos at KamLAND [Ph.D. thesis], Tohoku University, Honshu, Japan, 2005.
[4]
S. Enomoto, “Using neutrinos to study the Earth: geo-neutrinos,” in Proceedings of the NeuTel Conference, Venice, Italy, 2009.
[5]
G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, and A. M. Rotunno, “Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches,” Physical Review D, vol. 86, no. 1, Article ID 013012, 10 pages, 2012.
[6]
J. N. Connelly, M. Bizzarro, A. N. Krot, A. Nordlund, D. Wielandt, and M. A. Ivanova, “The absolute chronology and thermal processing of solids in the solar protoplanetary disk,” Science, vol. 338, no. 6107, pp. 651–655, 2012.
[7]
S. A. Wilde, J. W. Valley, W. H. Peck, and C. M. Graham, “Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago,” Nature, vol. 409, no. 6817, pp. 175–178, 2001.
[8]
T. Klelne, C. Münker, K. Mezger, and H. Palme, “Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronomeby,” Nature, vol. 418, no. 6901, pp. 952–955, 2002.
[9]
V. R. Murthy, W. van Westrenen, and Y. Fei, “Experimental evidence that potassium is a substantial radioactive heat source in planetary cores,” Nature, vol. 423, no. 6936, pp. 163–165, 2003.
[10]
W. F. McDonough, “Compositional model for the Earth's core,” in The Mantle and Core, R. W. Carlson, Ed., vol. 2 of Treatise on Geochemistry, pp. 547–568, Elsevier, Oxford, UK, 2003.
[11]
J. M. Herndon, “Substructure of the inner core of the earth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 2, pp. 646–648, 1996.
[12]
A. M. Dziewonski and D. L. Anderson, “Preliminary reference Earth model,” Physics of the Earth and Planetary Interiors, vol. 25, no. 4, pp. 297–356, 1981.
[13]
Y. Wang and L. Wen, “Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth's mantle,” Journal of Geophysical Research B, vol. 109, no. 10, Article ID B10305, 18 pages, 2004.
[14]
O. ?rámek, W. F. McDonough, E. S. Kite, V. Leki?, S. T. Dye, and S. Zhong, “Geophysical and geochemical constraints on geo-neutrino fluxes from Earth's mantle,” Earth and Planetary Science Letters, vol. 361, pp. 356–366, 2013.
[15]
R. L. Rudnick and S. Gao, “Composition of the continental crust,” in The Crust, R. L. Rudnick, Ed., vol. 3 of Treatise on Geochemistry, pp. 1–64, Elsevier, Oxford, UK, 2003.
[16]
Y. Huang, V. Chubakov, F. Mantovani, R. L. Rudnick, and W. F. McDonough, “A reference Earth model for the heat-producing elements and associated geoneutrino flux,” Geochemistry, Geophysics, Geosystems, vol. 14, no. 6, pp. 2003–2029, 2013.
[17]
W. F. McDonough and S.-S. Sun, “The composition of the Earth,” Chemical Geology, vol. 120, no. 3-4, pp. 223–253, 1995.
[18]
C. J. Allègre, J.-P. Poirier, E. Humler, and A. W. Hofmann, “The chemical composition of the Earth,” Earth and Planetary Science Letters, vol. 134, no. 3-4, pp. 515–526, 1995.
[19]
S. R. Hart and A. Zindler, “In search of a bulk-Earth composition,” Chemical Geology, vol. 57, no. 3-4, pp. 247–267, 1986.
[20]
R. Arevalo Jr., W. F. McDonough, and M. Luong, “The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution,” Earth and Planetary Science Letters, vol. 278, no. 3-4, pp. 361–369, 2009.
[21]
H. Palme and H. S. C. O'Neill, “Cosmochemical estimates of mantle composition,” in The Mantle and Core, R. W. Carlson, Ed., vol. 2 of Treatise of Geochemistry, pp. 1–38, Elsevier, Oxford, UK, 2003.
[22]
M. Javoy, E. Kaminski, F. Guyot et al., “The chemical composition of the Earth: enstatite chondrite models,” Earth and Planetary Science Letters, vol. 293, no. 3-4, pp. 259–268, 2010.
[23]
H. S. C. O'Neill and H. Palme, “Collisional erosion and the non-chondritic composition of the terrestrial planets,” Philosophical Transactions of the Royal Society A, vol. 366, no. 1883, pp. 4205–4238, 2008.
[24]
J. H. Davies and D. R. Davies, “Earth's surface heat flux,” Solid Earth, vol. 1, no. 1, pp. 5–24, 2010.
[25]
C. Jaupart, S. Labrosse, and J. C. Mareschal, “Temperatures, heat and energy in the mantle of the Earth,” in Treatise of Geophysics, D. J. Stevenson, Ed., pp. 1–53, Elsevier, Amsterdam, The Netherlands, 2007.
[26]
G. L. Fogli, E. Lisi, A. Palazzo, and A. M. Rotunno, “Combined analysis of KamLAND and Borexino neutrino signals from Th and U decays in the Earth's interior,” Physical Review D, vol. 82, no. 9, Article ID 093006, 9 pages, 2010.
[27]
L. M. Krauss, S. L. Glashow, and D. N. Schramm, “Antineutrino astronomy and geophysics,” Nature, vol. 310, no. 5974, pp. 191–198, 1984.
[28]
C. G. Rothschild, M. C. Chen, and F. P. Calaprice, “Antineutrino geophysics with liquid scintillator detectors,” Geophysical Research Letters, vol. 25, no. 7, pp. 1083–1086, 1998.
[29]
S. Enomoto, E. Ohtani, K. Inoue, and A. Suzuki, “Neutrino geophysics with KamLAND and future prospects,” Earth and Planetary Science Letters, vol. 258, no. 1-2, pp. 147–159, 2007.
[30]
G. L. Fogli, E. Lisi, A. Palazzo, and A. M. Rotunno, “Geo-neutrinos: a systematic approach to uncertainties and correlations,” Earth, Moon and Planets, vol. 99, no. 1–4, pp. 111–130, 2006.
[31]
F. Mantovani, L. Carmignani, G. Fiorentini, and M. Lissia, “Antineutrinos from Earth: a reference model and its uncertainties,” Physical Review D, vol. 69, no. 1, Article ID 013001, 12 pages, 2004.
[32]
G. Fiorentini, G. L. Fogli, E. Lisi, F. Mantovani, and A. M. Rotunno, “Mantle geo-neutrinos in KamLAND and Borexino,” Physical Review D, vol. 86, Article ID 033004, 11 pages, 2012.
[33]
M. Coltorti, R. Boraso, F. Mantovani et al., “U and Th content in the central apennines continental crust: a contribution to the determination of the geo-neutrinos flux at LNGS,” Geochimica et Cosmochimica Acta, vol. 75, no. 9, pp. 2271–2294, 2011.
[34]
G. Fiorentini, M. Lissia, F. Mantovani, and R. Vannucci, “How much uranium is in the Earth? Predictions for geoneutrinos at KamLAND,” Physical Review D, vol. 72, no. 3, Article ID 033017, 11 pages, 2005.
[35]
W. M. White and E. M. Klein, “The oceanic crust,” in The Crust, R. L. Rudnick, Ed., vol. 3 of Treatise on Geochemistry, Elsevier, Oxford, UK, 2003.
[36]
R. Arevalo Jr. and W. F. McDonough, “Chemical variations and regional diversity observed in MORB,” Chemical Geology, vol. 271, no. 1-2, pp. 70–85, 2010.
[37]
V. J. M. Salters and A. Stracke, “Composition of the depleted mantle,” Geochemistry, Geophysics, Geosystems, vol. 5, no. 5, Article ID Q05004, 2004.
[38]
R. K. Workman and S. R. Hart, “Major and trace element composition of the depleted MORB mantle (DMM),” Earth and Planetary Science Letters, vol. 231, no. 1-2, pp. 53–72, 2005.
[39]
F. Mantovani, “Geo-neutrinos: phenomenology and experimental prospects,” in Proceedings of the AAP11 Conference, Wien, Austria, 2011.
[40]
F. Mantovani, “Geo-neutrinos: combined KamLAND and Borexino analysis, and future,” in Proceedings of the Neutrino Geoscience Conference, Takayama, Japan, 2013.
[41]
KamLAND Collaboration, “KamLAND: a liquid scintillator anti-neutrino detector at the Kamioka site,” Proposal for US involvement, STANFORD-HEP-98-03, RCNS-98-15, 1998.
[42]
B. E. Berger, J. Busenitz, T. Classen, et al., “The KamLAND full-volume calibration system,” Journal of Instrumentation, vol. 4, Article ID P04017, 30 pages, 2009.
[43]
G. Alimonti, C. Arpesella, H. Back, et al., “The Borexino detector at the laboratori nazionali del Gran Sasso,” Nuclear Instruments and Methods in Physics Research A, vol. 600, no. 3, pp. 568–593, 2009.
[44]
G. Alimonti, C. Arpesella, M. B. Avanzini et al., “The liquid handling systems for the Borexino solar neutrino detector,” Nuclear Instruments and Methods in Physics Research A, vol. 609, no. 1, pp. 58–78, 2009.
[45]
H. Back, G. Bellini, J. Benziger, et al., “Borexino calibrations: hardware, methods, and results,” Journal of Instrumentation, vol. 7, no. 10, Article ID 10018, 36 pages, 2012.
[46]
K. Eguchi, S. Enomoto, K. Furuno et al., “First results from KamLAND: evidence for reactor antineutrino disappearance,” Physical Review Letters, vol. 90, no. 2, Article ID 021802, 6 pages, 2003.
[47]
T. Araki, K. Eguchi, S. Enomoto, et al., “Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion,” Physical Review Letters, vol. 94, Article ID 081801, 5 pages, 2005.
[48]
S. Abe, T. Ebihara, S. Enomoto et al., “Precision measurement of neutrino oscillation parameters with KamLAND,” Physical Review Letters, vol. 100, no. 22, Article ID 221803, 5 pages, 2008.
[49]
T. Araki, S. Enomoto, K. Furuno et al., “Experimental investigation of geologically produced antineutrinos with KamLAND,” Nature, vol. 436, no. 7050, pp. 499–503, 2005.
[50]
A. Gando, Y. Gando, K. Ichimura, et al., “Partial radiogenic heat model for Earth revealed by geo-neutrino measurements,” Nature Geoscience, vol. 4, pp. 647–651, 2011.
[51]
A. Gando, Y. Gando, H. Hanakago, et al., “Reactor on-off antineutrino measurement with KamLAND,” Physical Review D, vol. 88, no. 3, Article ID 033001, 10 pages, 2013.
[52]
A. Gando, Y. Gando, H. Hanakago et al., “Measurement of the double-β decay half-life of 136Xe with the KamLAND-Zen experiment,” Physical Review C, vol. 85, no. 4, Article ID 045504, 6 pages, 2012.
[53]
G. Alimonti, G. Anghloher, C. Arpesella et al., “Ultra-low background measurements in a large volume underground detector: Borexino collaboration,” Astroparticle Physics, vol. 8, no. 3, pp. 141–157, 1998.
[54]
G. Alimonti, C. Arpesella, G. Bacchiocchi et al., “A large-scale low-background liquid scintillation detector: the counting test facility at Gran Sasso,” Nuclear Instruments and Methods in Physics Research A, vol. 406, no. 3, pp. 411–426, 1998.
[55]
C. Arpesella, G. Bellini, J. Benziger et al., “First real time detection of 7Be solar neutrinos by Borexino,” Physics Letters, Section B, vol. 658, no. 4, pp. 101–108, 2008.
[56]
C. Arpesella, H. O. Back, M. Balata, et al., “Direct measurement of the 7Be solar neutrino flux with 192 days of borexino data,” Physical Review Letters, vol. 101, Article ID 091302, 6 pages, 2008.
[57]
G. Bellini, J. Benziger, D. Bick, et al., “Precision measurement of the 7Be solar neutrino interaction rate in Borexino,” Physical Review Letters, vol. 107, no. 14, Article ID 141302, 5 pages, 2011.
[58]
G. Bellini, J. Benziger, D. Bick et al., “Absence of a day-night asymmetry in the 7Be solar neutrino rate in Borexino,” Physics Letters B, vol. 707, no. 1, pp. 22–26, 2012.
[59]
G. Bellini, J. Benziger, D. Bick, et al., “First evidence of pep solar neutrinos by direct detection in Borexino,” Physical Review Letters, vol. 108, no. 5, Article ID 051302, 6 pages, 2012.
[60]
G. Bellini, J. Benziger, S. Bonetti, et al., “Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector,” Physical Review D, vol. 82, no. 3, Article ID 033006, 10 pages, 2010.
[61]
G. Bellini, J. Benziger, S. Bonetti, et al., “Observation of geo-neutrinos,” Physics Letters B, vol. 687, no. 4-5, pp. 299–304, 2010.
[62]
G. Bellini, J. Benziger, D. Bick, et al., “Measurement of geo-neutrinos from 1353 days of Borexino,” Physics Letters B, vol. 722, no. 4-5, pp. 295–300, 2013.
[63]
G. Bellini, D. Bick, G. Bonfini, et al., “SOX: short distance neutrino Oscillations with Borexino,” Journal of High Energy Physics, vol. 2013, article 38, 2013.
[64]
B. Ricci, V. Chubakov, J. Esposito, et al., “Reactor antineutrinos signal all over the world,” in Proceedings of the NeuTel Conference, Venice, Italy, 2013.
[65]
T. A. Mueller, D. Lhuillier, M. Fallot, et al., “Improved predictions of reactor antineutrino spectra,” Physical Review C, vol. 83, no. 5, Article ID 054615, 17 pages, 2011.
[66]
P. Huber, “Determination of antineutrino spectra from nuclear reactors,” Physical Review C, vol. 84, Article ID 024617, 16 pages, 2011.
[67]
G. Mention, M. Fechner, T. Lasserre et al., “Reactor antineutrino anomaly,” Physical Review D, vol. 83, no. 7, Article ID 073006, 20 pages, 2011.
[68]
J. W. Crowley, “Mantle convection and heat loss,” in Proceedings of the Neutrino Geoscience Conference, Takayama, Japan, 2013.
[69]
M. C. Chen, “Geo-neutrinos in SNO+,” Earth, Moon and Planets, vol. 99, no. 1–4, pp. 221–228, 2006.
[70]
M. Chen, “SNO+,” in Proceedings of the Neutrino Geoscience Conference, Takayama, Japan, 2013.
[71]
Z. Wang, “Update of DayaBay II Jiangmen anti-neutrino observation spectrometer,” in Proceedings of the Neutrino Geoscience Conference, Takayama, Japan, 2013.
[72]
M. Wurm, J. F. Beacom, L. B. Bezrukov, et al., “The next-generation liquidscintillator neutrino observatory LENA,” Astroparticle Physics, vol. 35, no. 11, pp. 685–732, 2012.
[73]
J. G. Learned, S. T. Dye, and S. Pakvasa, “Hanohano: a deep ocean anti-neutrino detector for unique neutrino physics and geophysics studies,” 2008, http://arxiv.org/abs/0810.4975.