全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Colorful World of Microbes: Carotenoids and Their Applications

DOI: 10.1155/2014/837891

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microbial cells accumulate pigments under certain culture conditions, which have very important industrial applications. Microorganisms can serve as sources of carotenoids, the most widespread group of naturally occurring pigments. More than 750 structurally different yellow, orange, and red colored molecules are found in both eukaryotes and prokaryotes with an estimated market of $ 919 million by 2015. Carotenoids protect cells against photooxidative damage and hence found important applications in environment, food and nutrition, disease control, and as potent antimicrobial agents. In addition to many research advances, this paper reviews concerns with recent evaluations, applications of microbial pigments, and recommendations for future researches with an understanding of evolution and biosynthetic pathways along with other relevant aspects. 1. Introduction The human eye does not see in black and white! Color is one of the first characteristics perceived by the human senses. It is integral to the interface between people and nature. Nature is rich in colors obtained from fruits, vegetables, roots, minerals, plants, microalgae, and so forth, and due to their origin from biological material they are often called “biocolors” [1]. Humans have traditionally preferred natural sources to add colors to food, clothing, cosmetics, and medicines. Among the molecules produced by microorganisms are carotenoids, melanins, flavins, phenazines, quinones, and bacteriochlorophylls, and more specifically monascins, violacein, and indigo [2, 3]. 2. Pigments from Microbes A variety of natural and synthetic pigments are available. Naturally derived pigments are represented by carotenoids, flavonoids (anthocyanins), and some tetrapyrroles (chlorophylls and phycobiliproteins). Lately, interest in synthetically derived pigments has decreased due to their toxic, carcinogenic, and teratogenic properties and attention towards microbial sources has increased as a safe alternative [2, 4–7]. Several species of algae, fungi, and bacteria have been exploited commercially for the production of pigments [2, 5, 7]. An inventory ofmicroorganisms producing different pigments is given in Table 1. An ideal pigment producing microorganism should be capable of using a wide range of C and N sources, must be tolerant to pH, temperature, and minerals, and must give reasonable color yield. The nontoxic and nonpathogenic nature, coupled with easy separation from cell biomass, are also preferred qualities. Microbial pigments have many advantages over artificial and inorganic colors. One relates

References

[1]  P. Pattnaik, U. Roy, and P. Jain, “Biocolours: new generation additives for food,” Indian Food Industry, vol. 16, no. 5, pp. 21–32, 1997.
[2]  H. J. Nelis and A. P. de Leenheer, “Microbial sources of carotenoid pigments used in foods and feeds,” Journal of Applied Bacteriology, vol. 70, no. 3, pp. 181–191, 1991.
[3]  L. Dufosse, “Pigments,” Encyclopedia of Microbiology, vol. 4, pp. 457–471, 2009.
[4]  S. Babu and I. S. Shenolikar, “Health and nutritional implications of food colours,” Indian Journal of Medical Research, vol. 102, pp. 245–249, 1995.
[5]  E. A. Johnson and W. A. Schroeder, “Microbial carotenoids,” Advances in biochemical engineering/biotechnology, vol. 53, pp. 119–178, 1996.
[6]  V. R. O. Canizares, L. E. Rios, R. R. Olvera, N. T. Ponce, and R. F. Marquez, “Microbial sources of pigments,” Revista Latinoamericana de Microbiología, vol. 40, no. 1-2, pp. 87–107, 1998.
[7]  S. Babitha, Biotechnology for Agro-Industrial. Residues Utilization II, Microbial Pigments, 2009.
[8]  V. K. Joshi, D. Attri, A. Bala, and S. Bhushan, “Microbial pigments,” Indian Journal of Biotechnology, vol. 2, no. 3, pp. 362–369, 2003.
[9]  H. Klaui, “Industrial and commercial uses of carotenoids,” in IUPAC Carotenoid Chemistry and BioChemistry, G. Britton and T. W. Goodwin, Eds., pp. 309–317, Pergamon Press, Oxford, UK, 1982.
[10]  I. H. Ciapara, L. F. Valenzuela, F. M. Goycoolea, and W. A. Monal, “Microencapsulation of astaxanthin in a chitosan matrix,” Carbohydrate Polymers, vol. 56, no. 1, pp. 41–45, 2004.
[11]  S. Saha, R. Thavasi, and S. Jayalakshmi, “Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants,” Research Journal of Microbiology, vol. 3, no. 3, pp. 122–128, 2008.
[12]  S. Alcantara and S. Sanchez, “Influence of carbon and nitrogen sources on Flavobacterium growth and zeaxanthin biosynthesis,” Journal of Industrial Microbiology and Biotechnology, vol. 23, no. 1, pp. 697–700, 1999.
[13]  J. Lorquin, F. Molouba, and B. L. Dreyfus, “Identification of the carotenoid pigment canthaxanthin from photosynthetic Bradyrhizobium strains,” Applied and Environmental Microbiology, vol. 63, no. 3, pp. 1151–1154, 1997.
[14]  A. Yokoyama, H. Izumida, and W. Miki, “Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum,” Bioscience, Biotechnology and Biochemistry, vol. 58, no. 10, pp. 1842–1844, 1994.
[15]  A. Tsubokura, H. Yoneda, and H. Mizuta, “Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium,” International Journal of Systematic Bacteriology, vol. 49, no. 1, pp. 277–282, 1999.
[16]  M. Hümbelin, A. Thomas, J. Lin, J. Li, J. Jore, and A. Berry, “Genetics of isoprenoid biosynthesis in Paracoccus zeaxanthinifaciens,” Gene, vol. 297, no. 1-2, pp. 129–139, 2002.
[17]  H. C. Zhang, J. X. Zhan, K. M. Su, and Y. X. Zhang, “A kind of potential food additive produced by Streptomyces coelicolor: characteristics of blue pigment and identification of a novel compound, λ-actinorhodin,” Food Chemistry, vol. 95, no. 2, pp. 186–192, 2006.
[18]  G. Y. Liu and V. Nizet, “Color me bad: microbial pigments as virulence factors,” Trends in Microbiology, vol. 17, no. 9, pp. 406–413, 2009.
[19]  G. Britton, “Structure and properties of carotenoids in relation to function,” The FASEB Journal, vol. 9, no. 15, pp. 1551–1558, 1995.
[20]  “IUPAC commission on the nomenclature of organic chemistry and IUPAC-IUB commission on biochemical nomenclature, nomenclature of carotenoids (Rules approved 1974),” Pure and Applied Chemistry, vol. 41, pp. 407–431, 1975.
[21]  A. Wisniewska and W. K. Subczynski, “Effects of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers,” Biochimica et Biophysica Acta, vol. 1368, no. 2, pp. 235–246, 1998.
[22]  M. G. Simic, “Carotenoid free radicals,” Methods in Enzymology, vol. 213, pp. 444–453, 1992.
[23]  M. Fuciman, P. Chabera, A. Zupcanova, et al., “Excited state properties of aryl Carotenoids,” Physical Chemistry Chemical Physics, vol. 12, no. 3, pp. 3112–3120, 2010.
[24]  A. Vershinin, “Biological functions of Carotenoids—diversity and evolution,” BioFactors, vol. 10, no. 2-3, pp. 99–104, 1999.
[25]  H. A. Frank and R. J. Cogdell, “The photochemistry and functions of carotenoids in photosynthesis,” in Carotenoids in Photosynthesis, A. Young and G. Britton, Eds., pp. 252–326, Springer, London, UK, 1993.
[26]  M. M. Mathews-Roth, “Medical application and uses of Carotenoids,” in Carotenoid-Chemistry and Boichemistry IUPAC, G. Britton and T. W. Goodwin, Eds., pp. 297–307, Pergamon Press, Oxford, UK, 1982.
[27]  W. I. Gruszecki and K. Strza?ka, “Carotenoids as modulators of lipid membrane physical properties,” Biochimica et Biophysica Acta, vol. 1740, no. 2, pp. 108–115, 2005.
[28]  J. A. Olson and N. I. Krinsky, “Introduction: the colorful, fascinating world of the carotenoids: important physiologic modulators,” The FASEB Journal, vol. 9, no. 15, pp. 1547–1550, 1995.
[29]  G. Britton, “UV/Visible spectroscopy,” in Spectroscopy 1B, G. Britton, J. S. Liaanen, and H. Pfander, Eds., pp. 13–62, Birkh?user, Basel, Switzerland, 1995.
[30]  W. I. Gruszecki and J. Sielewiesiuk, “Orientation of xanthophylls in phosphatidylcholine multibilayers,” Biochimica et Biophysica Acta, vol. 1023, no. 3, pp. 405–412, 1990.
[31]  G. A. Armstrong, “Genetics of eubacterial carotenoid biosynthesis: a colorful tale,” Annual Review of Microbiology, vol. 51, pp. 629–659, 1997.
[32]  N. J. C. Fong, M. L. Burgess, K. D. Barrow, and D. R. Glenn, “Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress,” Applied Microbiology and Biotechnology, vol. 56, no. 5-6, pp. 750–756, 2001.
[33]  G. Ourisson and Y. Nakatani, “Bacterial Carotenoids as membrane reinforcers: a general role of polyterpenoids: membrane stabilization,” in Carotenoids: Chemistry and Biochemistry, N. I. Krinsky, M. M. Mathew-Roth, and R. F. Taylor, Eds., pp. 237–245, Plenum Press, New York, NY, USA, 1989.
[34]  S. Rottem and O. Markowitz, “Carotenoids act as reinforcers of the Acholeplasma laidlawii lipid bilayer,” Journal of Bacteriology, vol. 140, no. 3, pp. 944–948, 1979.
[35]  M. V. Jagannadham, K. Narayanan, C. Mohan Rao, and S. Shivaji, “In vivo characteristics and localisation of carotenoid pigments in psychrotrophic and mesophilic Micrococcus roseus using photoacoustic spectroscopy,” Biochemical and Biophysical Research Communications, vol. 227, no. 1, pp. 221–226, 1996.
[36]  V. V. Petrunyaka, “Localization and role of carotenoids in molluscan neurons,” Cellular and Molecular Neurobiology, vol. 2, no. 1, pp. 11–20, 1982.
[37]  R. J. Cogdell, P. Fyfe, N. Fraser, et al., “Photosynthetic light harvesting,” in Microbial Responses to Light and Time, M. X. Caddick, S. Baumberg, D. A. Hodgson, and M. K. Phillips Jones, Eds., pp. 143–158, SGM symposium, Cambridge University Press, Cambridge, UK, 1998.
[38]  H. Wackerbarth, T. Stoll, S. Gebken, C. Pelters, and U. Bindrich, “Carotenoid-protein interaction as an approach for the formulation of functional food emulsions,” Food Research International, vol. 42, no. 9, pp. 1254–1258, 2009.
[39]  L. P. Vernon and F. G. Augusto, “Pigment protein complexes derived from Rhodospirillum rubrum chromatophores by enzymatic digestion,” Biochimica et Biophysica Acta, vol. 143, no. 1, pp. 144–153, 2003.
[40]  report code: FOD025C, 2008http://www.bccresearch.com/report/FOD025C.html.
[41]  G. A. Armstrong, “Eubacteria show their true colors: genetics of carotenoid pigment biosynthesis from microbes to plants,” Journal of Bacteriology, vol. 176, no. 16, pp. 4795–4802, 1994.
[42]  S. Pandian, S. Saengchjan, and T. S. Raman, “An alternative pathway for the biosynthesis of isoprenoid compounds in bacteria,” Biochemical Journal, vol. 196, no. 3, pp. 675–681, 1981.
[43]  M. S. Anderson, J. G. Yarger, C. L. Burck, and C. D. Poulter, “Farnesyl diphosphate synthetase. Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 264, no. 32, pp. 19176–19184, 1989.
[44]  Y. Tani, “Microbial production of vitamin B6 and derivatives,” in Biotechnology of Vitamins, Pigments and Growth Factors, E. J. Vandamme, Ed., pp. 221–230, Elsevier, London, UK, 1989.
[45]  S. Fujisaki, H. Hara, Y. Nishimura, K. Horiuchi, and T. Nishino, “Cloning and nucleotide sequence of the ispA gene responsible for farnesyl diphosphate synthase activity in Escherichia coli,” Journal of Biochemistry, vol. 108, no. 6, pp. 995–1000, 1990.
[46]  J. Schwender, M. Seemann, H. K. Lichtenthaler, and M. Rohmer, “Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus,” Biochemical Journal, vol. 316, no. 1, pp. 73–80, 1996.
[47]  D. Umeno, A. V. Tobias, and F. H. Arnold, “Diversifying carotenoid biosynthetic pathways by directed evolution,” Microbiology and Molecular Biology Reviews, vol. 69, no. 1, pp. 51–78, 2005.
[48]  C. Liang, F. Zhao, W. Wei, Z. Wen, and S. Qin, “Carotenoid biosynthesis in cyanobacteria: structural and evolutionary scenarios based on comparative genomics,” International Journal of Biological Sciences, vol. 2, no. 4, pp. 197–207, 2006.
[49]  N. A. Moran and T. Jarvik, “Lateral transfer of genes from fungi underlies carotenoid production in aphids,” Science, vol. 328, no. 5978, pp. 624–627, 2010.
[50]  W. F. Vincent, M. T. Downes, R. W. Castenholz, and C. Howard-Williams, “Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica,” European Journal of Phycology, vol. 28, no. 4, pp. 213–221, 1993.
[51]  W. F. Vincent, D. R. Mueller, and S. Bonilla, “Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic,” Cryobiology, vol. 48, no. 2, pp. 108–112, 2004.
[52]  K. Sabbe, D. A. Hodgson, E. Verleyen et al., “Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes,” Freshwater Biology, vol. 49, no. 3, pp. 296–319, 2004.
[53]  D. R. Mueller, W. F. Vincent, S. Bonilla, and I. Laurion, “Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem,” FEMS Microbiology Ecology, vol. 53, no. 1, pp. 73–87, 2005.
[54]  A. Oren and F. Rodriguez-Valera, “The contribution of halophilic Bacteria to the red coloration of saltern crystallizer ponds,” FEMS Microbiology Ecology, vol. 36, no. 2-3, pp. 123–130, 2001.
[55]  J. F. Martin, E. Gudina, and J. Barredo, “Conversion of β-carotene into astaxanthin: two separate enzymes or a bifunctional hydroxylase-ketolase protein,” Microbial Cell Factories, vol. 7, no. 3, pp. 1475–2859, 2008.
[56]  P. R. G. Schindler and H. Metz, “Bacteria of the Flexibacter Sporocytophaga group and violet-colored bacteria as indicators of hygienic hazardous drinking water,” Zentralblatt fur Hygiene und Umweltmedizin, vol. 189, no. 1, pp. 29–36, 1989.
[57]  J.-D. Gu and K. H. Cheung, “Phenotypic expression of Vogesella indigofera upon exposure to hexavalent chromium, Cr6+,” World Journal of Microbiology and Biotechnology, vol. 17, no. 5, pp. 475–480, 2001.
[58]  Z. Vanessa and C. Cardona, Molecular analysis, physiological study and biotechnological capabilities of blue pigmented bacteria from Puerto Rico [Ph.D. dissertation], University of Puerto Rico, 2010.
[59]  C. Nianhong, T. S. Bianchi, B. A. McKee, and J. M. Bland, “Historical trends of hypoxia on the Louisiana shelf: application of pigment as biomarkers,” Organic Geochemistry, vol. 32, no. 4, pp. 543–561, 2001.
[60]  E. J. Vandamme, “Biotechnology of Vitamins, Pigments of growth factors,” in Applied Sciences, E. J. Vandamme, Ed., pp. 15–21, Elsevier Science Publishers, London, UK, 1989.
[61]  A. Zeb and S. Mehmood, “Carotenoids content from various sources and their potential health applications,” Pakistan Journal of Nutrition, vol. 3, no. 3, pp. 199–204, 2004.
[62]  C. C. Maramag, J. D. Ribaya-Mercado, P. Rayco-Solon et al., “Influence of carotene-rich vegetable meals on the prevalence of anaemia and iron deficiency in Filipino school children,” European Journal of Clinical Nutrition, vol. 64, no. 5, pp. 468–474, 2010.
[63]  A. Kornhauser, W. Wamer, and L. Lambert, in Carotenoids: Chemistry and Biology, N. I. Krinsky, M. M. Mathews-Roth, and R. F. Taylor, Eds., pp. 301–312, Plenum Press, New York, NY, USA, 1990.
[64]  K. Ibrahim, T. J. Hassan, and S. N. Jafarey, “Plasma vitamin A and carotene in maternal and cord blood,” Asia-Oceania Journal of Obstetrics and Gynaecology, vol. 17, no. 2, pp. 159–164, 1991.
[65]  S. Patton, L. M. Canfield, G. E. Huston, A. M. Ferris, and R. G. Jensen, “Carotenoids of human colostrum,” Lipids, vol. 25, no. 3, pp. 159–165, 1990.
[66]  A. V. Rao and L. G. Rao, “Carotenoids and human health,” Pharmacological Research, vol. 55, no. 3, pp. 207–216, 2007.
[67]  P. Di Mascio, S. Kaiser, and H. Sies, “Lycopene as the most efficient biological carotenoid singlet oxygen quencher,” Archives of Biochemistry and Biophysics, vol. 274, no. 2, pp. 532–538, 1989.
[68]  D. M. Snodderly, “Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins,” American Journal of Clinical Nutrition, vol. 62, no. 6, pp. 1448S–14615S, 1995.
[69]  M. G. Sajilata, R. S. Singhal, and M. Y. Kamat, “The carotenoid pigment zeaxanthin—a review,” Comprehensive Reviews in Food Science and Food Safety, vol. 7, no. 1, pp. 29–49, 2008.
[70]  P. Bhosale, “Environmental and cultural stimulants in the production of carotenoids from microorganisms,” Applied Microbiology and Biotechnology, vol. 63, no. 4, pp. 351–361, 2004.
[71]  H. McNulty, R. F. Jacob, and R. P. Mason, “Biological activity of Carotenoids related to distinct membrane physiochemical interactions,” American Journal of Cardiology, vol. 101, no. 10, pp. 20D–29D, 2008.
[72]  A. Bendich, “Carotenoids and the immune response,” Journal of Nutrition, vol. 119, no. 1, pp. 112–115, 1989.
[73]  M. M. Mathews-Roth, “Plasma concentrations of carotenoids after large doses of β-carotene,” American Journal of Clinical Nutrition, vol. 52, no. 3, pp. 500–501, 1990.
[74]  H. Nishino, “Cancer prevention by carotenoids,” Mutation Research, vol. 402, no. 1-2, pp. 159–163, 1998.
[75]  S. Agarwal and A. V. Rao, “Tomato lycopene and low density lipoprotein oxidation: a human dietary intervention study,” Lipids, vol. 33, no. 10, pp. 981–984, 1998.
[76]  N. V. Raj, D. Dhanashekaran, T. Nooruddin, and A. Panneerselvam, “Production of prodigiosin from Serratia marescens and its cytotoxicity activity,” Journal of Pharmacy Research, vol. 2, no. 4, pp. 590–593, 2009.
[77]  C. Campàs, M. Dalmau, B. Montaner et al., “Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia,” Leukemia, vol. 17, no. 4, pp. 746–750, 2003.
[78]  B. Montaner, S. Navarro, M. Piqué et al., “Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines,” British Journal of Pharmacology, vol. 131, no. 3, pp. 585–593, 2000.
[79]  E. Llagostera, V. Soto-Cerrato, R. Joshi, B. Montaner, P. Gimenez-Bonafé, and R. Pérez-Tomás, “High cytotoxic sensitivity of the human small cell lung doxorubicin-resistant carcinoma (GLC4/ADR) cell line to prodigiosin through apoptosis activation,” Anti-Cancer Drugs, vol. 16, no. 4, pp. 393–399, 2005.
[80]  S. Nobutaka, N. Masami, H. Kazayuki, H. Tadaaki, and M. Katsumi, “Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium: serratia marescens strain B2 against gray mold pathogen: Botyritis cinerea,” Journal of General Plant Pathology, vol. 67, no. 4, pp. 312–319, 2001.
[81]  R. A. Manderville, “Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products,” Current Medicinal Chemistry-Anti-Cancer Agents, vol. 1, no. 2, pp. 195–218, 2001.
[82]  A. V. Giri, N. Anandkumar, G. Muthukumaran, and G. Pennathur, “A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil,” BMC Microbiology, vol. 4, pp. 1–10, 2004.
[83]  D. K. Paruchuri and R. M. Harshey, “Flagellar variation in Serratia marcescens is associated with color variation,” Journal of Bacteriology, vol. 169, no. 1, pp. 61–65, 1987.
[84]  Q.-J. Lu, C.-Y. Huang, S.-X. Yao, R.-S. Wang, and W. U. Xiao-Na, “Effects of fat soluble extracts from vegetable powder and beta-carotene on proliferation and apoptosis of lung cancer cell. YTMLC-90,” Biomedical and Environmental Sciences, vol. 16, no. 3, pp. 237–245, 2003.
[85]  D. D. Karp, A. S. Tsao, and E. S. Kim, “Nonsmall-cell lung cancer: chemoprevention studies,” Seminars in Thoracic and Cardiovascular Surgery, vol. 15, no. 4, pp. 405–420, 2003.
[86]  N. van Zandwijk and F. R. Hirsch, “Chemoprevention of lung cancer. Current status and future prospects,” Lung Cancer, vol. 42, no. 2, pp. S71–S79, 2003.
[87]  R. M. Russell, “The enigma of β-carotene in carcinogenesis: what can be learned from animal studies,” Journal of Nutrition, vol. 134, no. 1, pp. 262S–268S, 2004.
[88]  A. R. Kristal, “Vitamin A, Retionoids and Carotenoids as chemo preventive agents for prostrate cancer,” Journal Of Urology, vol. 171, no. 2, pp. 54–58, 2004.
[89]  M. A. Murtaugh, K.-N. Ma, J. Benson, K. Curtin, B. Caan, and M. L. Slattery, “Antioxidants, Carotenoids and risk of rectal cancer,” American Journal of Epidemiology, vol. 159, no. 1, pp. 32–41, 2004.
[90]  S. M?nnist?, S. A. Smith-Warner, D. Spiegelman et al., “Dietary carotenoids and risk of lung cancer in a pooled analysis of seven cohort studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 1, pp. 40–48, 2004.
[91]  N. I. Krinsky, “Mechanism of action of biological antioxidants,” Proceedings of the Society for Experimental Biology and Medicine, vol. 200, no. 2, pp. 248–254, 1992.
[92]  A. Bendich, “Carotenoids and the immune system,” in Carotenoids: Chemisrty and Biology, N. I. Krinsky, M. M. Mathews-Roth, and R. F. Taylor, Eds., pp. 323–336, Plenum Press, NewYork, NY, USA, 1990.
[93]  P. Molnár, J. Deli, T. Tanaka et al., “Carotenoids with anti-Helicobacter pylori activity from Golden delicious apple,” Phytotherapy Research, vol. 24, no. 5, pp. 644–648, 2010.
[94]  L. Selvameenal, M. Radhakrishnan, and R. Balagurunathan, “Antibiotic pigment from desert soil actinomycetes; Biological activity, purification and chemical screening,” Indian Journal of Pharmaceutical Sciences, vol. 71, no. 5, pp. 499–504, 2009.
[95]  Z. S. Sathi, N. Sugimoto, M. I. Khali, and M. A. Gafur, “Isolation of yellowish antibiotic pigment 4-hydroxy Nitrobenzene from a strain of Streptomyces,” Pakistan Journal of Biological Sciences, vol. 52, pp. 201–203, 2002.
[96]  C. Kim, H. Jung, J. H. Kim, and C. S. Shin, “Effect of monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments,” Colloids and Surfaces B, vol. 47, no. 2, pp. 153–159, 2006.
[97]  S. Visalakchi and J. Muthumary, “Antimicrobial activity of the new endophytic Monodictys castaneae SVJM139 pigment and its optimization,” African Journal of Microbiology Research, vol. 4, no. 1, pp. 38–44, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133