All Title Author
Keywords Abstract


Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents

DOI: doi/10.1371/journal.ppat.1004128

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs.

References

[1]  Zhong P, Agosto LM, Munro JB, Mothes W (2013) Cell-to-cell transmission of viruses. Curr Opin Virol 3: 44–50. doi: 10.1016/j.coviro.2012.11.004
[2]  Sattentau Q (2008) Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6: 815–826. doi: 10.1038/nrmicro1972
[3]  Meredith LW, Harris HJ, Wilson GK, Fletcher NF, Balfe P, et al. (2013) Early infection events highlight the limited transmissibility of hepatitis C virus in vitro. J Hepatol 58: 1074–1080. doi: 10.1016/j.jhep.2013.01.019
[4]  Timpe JM, Stamataki Z, Jennings A, Hu K, Farquhar MJ, et al. (2008) Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 47: 17–24. doi: 10.1002/hep.21959
[5]  Zeisel MB, Lupberger J, Fofana I, Baumert TF (2013) Host-targeting agents for prevention and treatment of chronic hepatitis C - perspectives and challenges. J Hepatol 58: 375–384. doi: 10.1016/j.jhep.2012.09.022
[6]  Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, et al. (2011) EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 17: 589–595. doi: 10.1038/nm.2341
[7]  Zona L, Lupberger J, Sidahmed-Adrar N, Thumann C, Harris HJ, et al. (2013) HRas signal transduction promotes hepatitis C virus cell entry by triggering assembly of the host tetraspanin receptor complex. Cell Host Microbe 13: 302–313. doi: 10.1016/j.chom.2013.02.006
[8]  Zahid MN, Turek M, Xiao F, Dao Thi VL, Guerin M, et al. (2013) The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology 57: 492–504. doi: 10.1002/hep.26097
[9]  Fofana I, Xiao F, Thumann C, Turek M, Zona L, et al. (2013) A novel monoclonal anti-CD81 antibody produced by genetic immunization efficiently inhibits Hepatitis C virus cell-cell transmission. PLoS One 8: e64221. doi: 10.1371/journal.pone.0064221
[10]  Catanese MT, Loureiro J, Jones CT, Dorner M, von Hahn T, et al. (2013) Different requirements for scavenger receptor class B type I in hepatitis C virus cell-free versus cell-to-cell transmission. J Virol 87: 8282–8293. doi: 10.1128/jvi.01102-13
[11]  Witteveldt J, Evans MJ, Bitzegeio J, Koutsoudakis G, Owsianka AM, et al. (2009) CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. J Gen Virol 90: 48–58. doi: 10.1099/vir.0.006700-0
[12]  Brimacombe CL, Grove J, Meredith LW, Hu K, Syder AJ, et al. (2011) Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J Virol 85: 596–605. doi: 10.1128/jvi.01592-10
[13]  Kwon H, Lok AS (2011) Hepatitis B therapy. Nat Rev Gastroenterol Hepatol 8: 275–284. doi: 10.1038/nrgastro.2011.33
[14]  Trono D, Van Lint C, Rouzioux C, Verdin E, Barre-Sinoussi F, et al. (2010) HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science 329: 174–180. doi: 10.1126/science.1191047
[15]  McHutchison JG, Manns MP, Muir AJ, Terrault NA, Jacobson IM, et al. (2010) Telaprevir for previously treated chronic HCV infection. N Engl J Med 362: 1292–1303. doi: 10.1056/nejmoa0908014
[16]  Poordad F, McCone J Jr, Bacon BR, Bruno S, Manns MP, et al. (2011) Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 364: 1195–1206. doi: 10.1056/nejmoa1010494
[17]  Rong L, Dahari H, Ribeiro RM, Perelson AS (2010) Rapid emergence of protease inhibitor resistance in hepatitis C virus. Sci Transl Med 2: 30ra32. doi: 10.1126/scitranslmed.3000544
[18]  Lange CM, Zeuzem S (2013) Perspectives and challenges of interferon-free therapy for chronic hepatitis C. J Hepatol 58: 583–592. doi: 10.1016/j.jhep.2012.10.019
[19]  Pawlotsky JM (2013) Treatment of chronic hepatitis C: current and future. Curr Top Microbiol Immunol 369: 321–342.
[20]  Sarrazin C, Hezode C, Zeuzem S, Pawlotsky JM (2012) Antiviral strategies in hepatitis C virus infection. J Hepatol 56 Suppl 1S88–100. doi: 10.1016/s0168-8278(12)60010-5
[21]  Lok AS, Gardiner DF, Lawitz E, Martorell C, Everson GT, et al. (2012) Preliminary study of two antiviral agents for hepatitis C genotype 1. N Engl J Med 366: 216–224. doi: 10.1056/nejmoa1104430
[22]  Jacobson IM, Gordon SC, Kowdley KV, Yoshida EM, Rodriguez-Torres M, et al. (2013) Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. N Engl J Med 368: 1867–1877. doi: 10.1056/nejmoa1214854
[23]  Gane EJ, Stedman CA, Hyland RH, Ding X, Svarovskaia E, et al. (2013) Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N Engl J Med 368: 34–44. doi: 10.1056/nejmoa1208953
[24]  Poordad F, Lawitz E, Kowdley KV, Cohen DE, Podsadecki T, et al. (2013) Exploratory study of oral combination antiviral therapy for hepatitis C. N Engl J Med 368: 45–53. doi: 10.1056/nejmoa1208809
[25]  Trembling PM, Tanwar S, Rosenberg WM, Dusheiko GM (2013) Treatment decisions and contemporary versus pending treatments for hepatitis C. Nat Rev Gastroenterol Hepatol 10: 713–728. doi: 10.1038/nrgastro.2013.163
[26]  Liang TJ, Ghany MG (2013) Current and future therapies for hepatitis C virus infection. N Engl J Med 368: 1907–1917. doi: 10.1056/nejmra1213651
[27]  Soriano V, Vispo E, Poveda E, Labarga P, Barreiro P (2012) Treatment failure with new hepatitis C drugs. Expert Opin Pharmacother 13: 313–323. doi: 10.1517/14656566.2012.653341
[28]  Gottwein JM, Jensen SB, Li YP, Ghanem L, Scheel TK, et al. (2013) Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses. Antimicrob Agents Chemother 57: 1291–1303. doi: 10.1128/aac.02164-12
[29]  Hezode C, Fontaine H, Dorival C, Larrey D, Zoulim F, et al. (2013) Triple therapy in treatment-experienced patients with HCV-cirrhosis in a multicentre cohort of the French Early Access Programme (ANRS CO20-CUPIC) - NCT01514890. J Hepatol 59: 434–441. doi: 10.1016/j.jhep.2013.04.035
[30]  Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, et al. (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA 102: 9294–9299. doi: 10.1073/pnas.0503596102
[31]  Jones CT, Catanese MT, Law LM, Khetani SR, Syder AJ, et al. (2010) Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nat Biotechnol 28: 167–171. doi: 10.1038/nbt.1604
[32]  Fofana I, Krieger SE, Grunert F, Glauben S, Xiao F, et al.. (2010) Monoclonal anti-claudin 1 antibodies prevent hepatitis C virus infection of primary human hepatocytes. Gastroenterology 139: : 953–964, 964 e951–954.
[33]  Owsianka A, Tarr AW, Juttla VS, Lavillette D, Bartosch B, et al. (2005) Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol 79: 11095–11104. doi: 10.1128/jvi.79.17.11095-11104.2005
[34]  Fofana I, Fafi-Kremer S, Carolla P, Fauvelle C, Zahid MN, et al.. (2012) Mutations that alter use of hepatitis C virus cell entry factors mediate escape from neutralizing antibodies. Gastroenterology 143: : 223–233 e229.
[35]  Keck ZY, Xia J, Wang Y, Wang W, Krey T, et al. (2012) Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate. PLoS Pathog 8: e1002653. doi: 10.1371/journal.ppat.1002653
[36]  Koutsoudakis G, Kaul A, Steinmann E, Kallis S, Lohmann V, et al. (2006) Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J Virol 80: 5308–5320. doi: 10.1128/jvi.02460-05
[37]  Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S, et al. (2006) Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci USA 103: 7408–7413. doi: 10.1073/pnas.0504877103
[38]  Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11: 791–796. doi: 10.1038/nm1268
[39]  Zhu H, Wong-Staal F, Lee H, Syder A, McKelvy J, et al. (2012) Evaluation of ITX 5061, a scavenger receptor B1 antagonist: resistance selection and activity in combination with other hepatitis C virus antivirals. J Infect Dis 205: 656–662. doi: 10.1093/infdis/jir802
[40]  Scheel TK, Gottwein JM, Mikkelsen LS, Jensen TB, Bukh J (2011) Recombinant HCV variants with NS5A from genotypes 1–7 have different sensitivities to an NS5A inhibitor but not interferon-alpha. Gastroenterology 140: 1032–1042. doi: 10.1053/j.gastro.2010.11.036
[41]  Zeisel MB, Koutsoudakis G, Schnober EK, Haberstroh A, Blum HE, et al. (2007) Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology 46: 1722–1731. doi: 10.1002/hep.21994
[42]  Kuonen F, Touvrey C, Laurent J, Ruegg C (2010) Fc block treatment, dead cells exclusion, and cell aggregates discrimination concur to prevent phenotypical artifacts in the analysis of subpopulations of tumor-infiltrating CD11b(+) myelomonocytic cells. Cytometry A 77: 1082–1090. doi: 10.1002/cyto.a.20969
[43]  Sainz B Jr, Chisari FV (2006) Production of infectious hepatitis C virus by well-differentiated, growth-arrested human hepatoma-derived cells. J Virol 80: 10253–10257. doi: 10.1128/jvi.01059-06
[44]  Pietschmann T, Zayas M, Meuleman P, Long G, Appel N, et al. (2009) Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 5: e1000475. doi: 10.1371/journal.ppat.1000475
[45]  Pawlotsky JM (2011) Treatment failure and resistance with direct-acting antiviral drugs against hepatitis C virus. Hepatology 53: 1742–1751. doi: 10.1002/hep.24262
[46]  Gottwein JM, Scheel TK, Jensen TB, Lademann JB, Prentoe JC, et al. (2009) Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology 49: 364–377. doi: 10.1002/hep.22673
[47]  Bauhofer O, Ruggieri A, Schmid B, Schirmacher P, Bartenschlager R (2012) Persistence of HCV in quiescent hepatic cells under conditions of an interferon-induced antiviral response. Gastroenterology 143: : 429–438 e428.
[48]  Lenz O, Verbinnen T, Lin TI, Vijgen L, Cummings MD, et al. (2010) In vitro resistance profile of the hepatitis C virus NS3/4A protease inhibitor TMC435. Antimicrob Agents Chemother 54: 1878–1887. doi: 10.1128/aac.01452-09
[49]  Bartolini B, Giombini E, Zaccaro P, Selleri M, Rozera G, et al. (2013) Extent of HCV NS3 protease variability and resistance-associated mutations assessed by next generation sequencing in HCV monoinfected and HIV/HCV coinfected patients. Virus Res 177: 205–208. doi: 10.1016/j.virusres.2013.08.001
[50]  Grove J, Nielsen S, Zhong J, Bassendine MF, Drummer HE, et al. (2008) Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. J Virol 82: 12020–12029. doi: 10.1128/jvi.01569-08
[51]  Pawlotsky JM (2013) NS5A inhibitors in the treatment of hepatitis C. J Hepatol 59: 375–382. doi: 10.1016/j.jhep.2013.03.030
[52]  Lee C, Ma H, Hang JQ, Leveque V, Sklan EH, et al. (2011) The hepatitis C virus NS5A inhibitor (BMS-790052) alters the subcellular localization of the NS5A non-structural viral protein. Virology 414: 10–18. doi: 10.1016/j.virol.2011.03.026
[53]  Sigal A, Kim JT, Balazs AB, Dekel E, Mayo A, et al. (2011) Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477: 95–98. doi: 10.1038/nature10347
[54]  Abela IA, Berlinger L, Schanz M, Reynell L, Gunthard HF, et al. (2012) Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog 8: e1002634. doi: 10.1371/journal.ppat.1002634
[55]  Yan H, Zhong G, Xu G, He W, Jing Z, et al. (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1: e00049. doi: 10.7554/elife.00049
[56]  Haid S, Grethe C, Dill MT, Heim M, Kaderali L, et al. (2014) Isolate-dependent use of Claudins for cell entry by hepatitis C virus. Hepatology 59: 24–34. doi: 10.1002/hep.26567
[57]  Fofana I, Zona L, Thumann C, Heydmann L, Durand SC, et al. (2013) Functional analysis of claudin-6 and claudin-9 as entry factors for hepatitis C virus infection of human hepatocytes by using monoclonal antibodies. J Virol 87: 10405–10410. doi: 10.1128/jvi.01691-13
[58]  Masson D, Koseki M, Ishibashi M, Larson CJ, Miller SG, et al. (2009) Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arterioscler Thromb Vasc Biol 29: 2054–2060. doi: 10.1161/atvbaha.109.191320
[59]  Cataldo VD, Gibbons DL, Perez-Soler R, Quintas-Cardama A (2011) Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N Engl J Med 364: 947–955. doi: 10.1056/nejmct0807960
[60]  Shi N, Hiraga N, Imamura M, Hayes CN, Zhang Y, et al. (2013) Combination therapies with NS5A, NS3 and NS5B inhibitors on different genotypes of hepatitis C virus in human hepatocyte chimeric mice. Gut 62: 1055–1061. doi: 10.1136/gutjnl-2012-302600
[61]  Sulkowski MS, Kang M, Matining R, Wyles D, Johnson VA, et al. (2014) Safety and antiviral activity of the HCV entry inhibitor ITX5061 in treatment-naive HCV-infected adults: a randomized, double-blind, phase 1b study. J Infect Dis 209: 658–667. doi: 10.1093/infdis/jit503
[62]  Tarr AW, Lafaye P, Meredith L, Damier-Piolle L, Urbanowicz RA, et al. (2013) An alpaca nanobody inhibits hepatitis C virus entry and cell-to-cell transmission. Hepatology 58: 932–939. doi: 10.1002/hep.26430
[63]  Nathan C (2012) Fresh approaches to anti-infective therapies. Sci Transl Med 4: 140sr142.
[64]  Fofana I, Jilg N, Chung RT, Baumert TF (2014) Entry inhibitors and future treatment of hepatitis C. Antiviral Res 104: 136–142. doi: 10.1016/j.antiviral.2014.02.001

Full-Text

comments powered by Disqus