All Title Author
Keywords Abstract

PLOS Genetics  2014 

Heritable Transmission of Stress Resistance by High Dietary Glucose in Caenorhabditis elegans

DOI: doi/10.1371/journal.pgen.1004346

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glucose is a major energy source and is a key regulator of metabolism but excessive dietary glucose is linked to several disorders including type 2 diabetes, obesity and cardiac dysfunction. Dietary intake greatly influences organismal survival but whether the effects of nutritional status are transmitted to the offspring is an unresolved question. Here we show that exposing Caenorhabditis elegans to high glucose concentrations in the parental generation leads to opposing negative effects on fecundity, while having protective effects against cellular stress in the descendent progeny. The transgenerational inheritance of glucose-mediated phenotypes is dependent on the insulin/IGF-like signalling pathway and components of the histone H3 lysine 4 trimethylase complex are essential for transmission of inherited phenotypes. Thus dietary over-consumption phenotypes are heritable with profound effects on the health and survival of descendants.

References

[1]  Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to humans. Science 328: 321–326 doi:10.1126/science.1172539.
[2]  Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75: 621–644 doi:10.1146/annurev-physiol-030212-183712.
[3]  Venn BJ, Green TJ (2007) Glycemic index and glycemic load: measurement issues and their effect on diet-disease relationships. Eur J Clin Nutr 61(Suppl 1): S122–S131 doi:10.1038/sj.ejcn.1602942.
[4]  Katz DJ, Edwards TM, Reinke V, Kelly WG (2009) A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137: 308–320 Available: http://eutils.ncbi.nlm.nih.gov/entrez/eu?tils/elink.fcgi?dbfrom=pubmed&id=1937969?6&retmode=ref&cmd=prlinks.
[5]  Tauffenberger A, Vaccaro A, Aulas A, Vande Velde C, Parker JA (2012) Glucose delays age-dependent proteotoxicity. Aging Cell 11: 856–866 doi:10.1111/j.1474-9726.2012.00855.x.
[6]  Lee SJ, Murphy CT, Kenyon C (2009) Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab 10: 379–391 doi:10.1016/j.cmet.2009.10.003.
[7]  Mondoux MA, Love DC, Ghosh SK, Fukushige T, Bond M, et al. (2011) O-GlcNAc Cycling and Insulin Signaling are Required for the Glucose Stress Response in Caenorhabditis elegans. Genetics 188: 369–82 doi:10.1534/genetics.111.126490.
[8]  Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942–946.
[9]  Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278: 1319–1322.
[10]  Apfeld J, O'Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18: 3004–3009 doi:10.1101/gad.1255404.
[11]  Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–230 doi:10.1038/35065638.
[12]  Jiang H, Guo R, Powell-Coffman JA (2001) The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci USA 98: 7916–7921 doi:10.1073/pnas.141234698.
[13]  Vaccaro A, Tauffenberger A, Ash PEA, Carlomagno Y, Petrucelli L, et al. (2012) TDP-1/TDP-43 regulates stress signaling and age-dependent proteotoxicity in Caenorhabditis elegans. PLoS Genet 8: e1002806 doi:10.1371/journal.pgen.1002806.
[14]  Horikawa M, Sakamoto K (2010) Polyunsaturated fatty acids are involved in regulatory mechanism of fatty acid homeostasis via daf-2/insulin signaling in Caenorhabditis elegans. Molecular and Cellular Endocrinology 323: 183–192 doi:10.1016/j.mce.2010.03.004.
[15]  Yang W, Hekimi S (2010) A Mitochondrial Superoxide Signal Triggers Increased Longevity in Caenorhabditis elegans. PLoS Biology 8: e1000556 Available: http://dx.plos.org/10.1371/journal.pbio.?1000556.t001.
[16]  Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, et al. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular cell 11: 619–633.
[17]  Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Current biology : CB 22: R741–R752 doi:10.1016/j.cub.2012.07.024.
[18]  Vaccaro A, Tauffenberger A, Aggad D, Rouleau G, Drapeau P, et al. (2012) Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PLoS ONE 7: e31321 doi:10.1371/journal.pone.0031321.
[19]  Vaccaro A, Patten SA, Ciura S, Maios C, Therrien M, et al. (2012) Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. PLoS ONE 7: e42117 doi:10.1371/journal.pone.0042117.
[20]  Vaccaro A, Patten SA, Aggad D, Julien C, Maios C, et al. (2013) Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol Dis 55: 64–75 doi:10.1016/j.nbd.2013.03.015.
[21]  Tauffenberger A, Julien C, Parker JA (2013) Evaluation of longevity enhancing compounds against transactive response DNA-binding protein-43 neuronal toxicity. Neurobiol Aging 34: 2175–2182 doi:10.1016/j.neurobiolaging.2013.03.014.
[22]  Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, et al. (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40: 572–4 doi:10.1038/ng.132.
[23]  Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, et al. (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479: 365–371 doi:10.1038/nature10572.
[24]  Haag ES, Wang S, Kimble J (2002) Rapid coevolution of the nematode sex-determining genes fem-3 and tra-2. Current biology: CB 12: 2035–2041.
[25]  Kawasaki I, Shim YH, Kirchner J, Kaminker J, Wood WB, et al. (1998) PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94: 635–645.
[26]  Blagosklonny MV (2012) Answering the ultimate question “What is the Proximal Cause of Aging?.”. Aging (Albany NY) 4: 861–877.
[27]  Rechtsteiner A, Ercan S, Takasaki T, Phippen TM, Egelhofer TA, et al. (2010) The Histone H3K36 Methyltransferase MES-4 Acts Epigenetically to Transmit the Memory of Germline Gene Expression to Progeny. PLoS Genet 6: e1001091.
[28]  Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95: 13091–13096.
[29]  Crawford D, Libina N, Kenyon C (2007) Caenorhabditis elegans integrates food and reproductive signals in lifespan determination. Aging Cell 6: 715–721 doi:10.1111/j.1474-9726.2007.00327.x.
[30]  Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, et al. (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5: 487–494 doi:10.1111/j.1474-9726.2006.00238.x.
[31]  Lim JP, Brunet A (2013) Bridging the transgenerational gap with epigenetic memory. Trends Genet 3 doi:10.1016/j.tig.2012.12.008.
[32]  Aerts L, Van Assche FA (2006) Animal evidence for the transgenerational development of diabetes mellitus. Int J Biochem Cell Biol 38: 894–903 doi:10.1016/j.biocel.2005.07.006.
[33]  Hoile SP, Lillycrop KA, Thomas NA, Hanson MA, Burdge GC (2011) Dietary protein restriction during F0 pregnancy in rats induces transgenerational changes in the hepatic transcriptome in female offspring. PLoS ONE 6: e21668 doi:10.1371/journal.pone.0021668.
[34]  Burdge GC, Hoile SP, Uller T, Thomas NA, Gluckman PD, et al. (2011) Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PLoS ONE 6: e28282 doi:10.1371/journal.pone.0028282.
[35]  Dubos R, Schaedler RW, Costello R (1968) Lasting biological effects of early environmental influences. I. Conditioning of adult size by prenatal and postnatal nutrition. J Exp Med 127: 783–799.
[36]  Niculescu MD, Lupu DS (2011) Nutritional influence on epigenetics and effects on longevity. Curr Opin Clin Nutr Metab Care 14: 35–40 doi:10.1097/MCO.0b013e328340ff7c.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal