全部 标题 作者
关键词 摘要

PLOS ONE  2014 

Neural Correlates of Letter Reversal in Children and Adults

DOI: 10.1371/journal.pone.0098386

Full-Text   Cite this paper   Add to My Lib

Abstract:

Children often make letter reversal errors when first learning to read and write, even for letters whose reversed forms do not appear in normal print. However, the brain basis of such letter reversal in children learning to read is unknown. The present study compared the neuroanatomical correlates (via functional magnetic resonance imaging) and the electrophysiological correlates (via event-related potentials or ERPs) of this phenomenon in children, ages 5–12, relative to young adults. When viewing reversed letters relative to typically oriented letters, adults exhibited widespread occipital, parietal, and temporal lobe activations, including activation in the functionally localized visual word form area (VWFA) in left occipito-temporal cortex. Adults exhibited significantly greater activation than children in all of these regions; children only exhibited such activation in a limited frontal region. Similarly, on the P1 and N170 ERP components, adults exhibited significantly greater differences between typical and reversed letters than children, who failed to exhibit significant differences between typical and reversed letters. These findings indicate that adults distinguish typical and reversed letters in the early stages of specialized brain processing of print, but that children do not recognize this distinction during the early stages of processing. Specialized brain processes responsible for early stages of letter perception that distinguish between typical and reversed letters may develop slowly and remain immature even in older children who no longer produce letter reversals in their writing.

References

[1]  Lachman T, Geyer T (2003) Letter reversals in dyslexia: Is the case really closed? A critical review and conclusions. Psychology Science 45: 50–72.
[2]  Terepocki M, Kruk RS, Willows DM (2002) The incidence and nature of letter orientation errors in reading disability. Journal of Learning Disabilities 35: 214–233 doi:10.1177/002221940203500304.
[3]  Black FW (1973) Reversal and rotation errors by normal and retarded readers. Perceptual and Motor Skills 36: 895–898. doi: 10.2466/pms.1973.36.3.895
[4]  Lachmann T, van Leeuwen C (2007) Paradoxical enhancement of letter recognition in developmental dyslexia. Developmental Neuropsychology 31: 61–77. doi: 10.1207/s15326942dn3101_4
[5]  Wolff PH, Melngailis I (1996) Reversing letters and reading transformed text in dyslexia: A reassessment. Reading and Writing 8: 341–355 doi:10.1007/BF00395113.
[6]  Corballis MC, Macadie L, Crotty A, Beale IL (1985) The naming of disoriented letters by normal and reading-disabled children. Journal of Child Psychology and Psychiatry 26: 929–938. doi: 10.1111/j.1469-7610.1985.tb00607.x
[7]  Grosser GS, Trzeciak GM (1981) Durations of recognition for single letters, with and without visual masking, by dyslexics and normal readers. Perceptual and Motor Skills 53: 991–995. doi: 10.2466/pms.1981.53.3.991
[8]  Cornell JM (1985) Spontaneous mirror-writing in children. Canadian Journal of Psychology 39: 174–179 doi:10.1037/h0080122.
[9]  Dehaene S (2009) Reading in the brain: The new science of how we read. 1st ed. New York: Penguin. 400 p.
[10]  Dehaene S, Nakamura K, Jobert A, Kuroki C, Ogawa S, et al. (2010) Why do children make mirror errors in reading? Neural correlates of mirror invariance in the visual word form area. NeuroImage 49: 1837–1848 doi:10.1016/j.neuroimage.2009.09.024.
[11]  Danziger E, Pederson E (1998) Through the looking glass: Literacy, writing systems and mirror-image discrimination. Written Language & Literacy 1: 153–169. doi: 10.1075/wll.1.2.02dan
[12]  Pederson E (2003) Mirror-image discrimination among nonliterate, monoliterate, and biliterate Tamil subjects. Written Language & Literacy 6: 71–91 doi:10.1075/wll.6.1.04ped.
[13]  Cohen L, Dehaene S (2004) Specialization within the ventral stream: the case for the visual word form area. NeuroImage 22: 466–476 doi:16/j.neuroimage.2003.12.049.
[14]  Cohen L, Lehéricy S, Chochon F, Lemer C, Rivaud S, et al. (2002) Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain 125: 1054. doi: 10.1093/brain/awf094
[15]  McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences 7: 293–299. doi: 10.1016/s1364-6613(03)00134-7
[16]  Pegado F, Nakamura K, Cohen L, Dehaene S (2011) Breaking the symmetry: Mirror discrimination for single letters but not for pictures in the Visual Word Form Area. NeuroImage 55: 742–749 doi:10.1016/j.neuroimage.2010.11.043.
[17]  Hamm JP, Johnson BW, Corballis MC (2004) One good turn deserves another: an event-related brain potential study of rotated mirror-normal letter discriminations. Neuropsychologia 42: 810–820. doi: 10.1016/j.neuropsychologia.2003.11.009
[18]  Nú?nez-Pe?a MI, Aznar-Casanova JA (2009) Mental rotation of mirrored letters: Evidence from event-related brain potentials. Brain and Cognition 69: 180–187. doi: 10.1016/j.bandc.2008.07.003
[19]  Milivojevic B, Hamm JP, Corballis MC (2011) About turn: how object orientation affects categorisation and mental rotation. Neuropsychologia 49: 3758–3767. doi: 10.1016/j.neuropsychologia.2011.09.034
[20]  Allison T, Puce A, Spencer DD, McCarthy G (1999) Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cerebral Cortex 9: 415–430. doi: 10.1093/cercor/9.5.415
[21]  Jobard G, Crivello F, Tzourio-Mazoyer N (2003) Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neuroimage 20: 693–712. doi: 10.1016/s1053-8119(03)00343-4
[22]  Bolger DJ, Perfetti CA, Schneider W (2005) Cross-cultural effect on the brain revisited: Universal structures plus writing system variation. Human Brain Mapping 25: 92–104. doi: 10.1002/hbm.20124
[23]  Tan LH, Laird AR, Li K, Fox PT (2005) Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping 25: 83–91 doi:10.1002/hbm.20134.
[24]  Dehaene S, Naccache L, Cohen L, Bihan DL, Mangin JF, et al. (2001) Cerebral mechanisms of word masking and unconscious repetition priming. Nature neuroscience 4: 752–758. doi: 10.1038/89551
[25]  Rauschecker AM, Bowen RF, Parvizi J, Wandell BA (2012) Position sensitivity in the visual word form area. Proceedings of the National Academy of Sciences of the United States of America. Available: http://www.ncbi.nlm.nih.gov/pubmed/22570?498. Accessed 10 May 2012.
[26]  Baker CI, Liu J, Wald LL, Kwong KK, Benner T, et al. (2007) Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proceedings of the National Academy of Sciences 104: 9087. doi: 10.1073/pnas.0703300104
[27]  Maurer U, Brem S, Bucher K, Brandeis D (2005) Emerging neurophysiological specialization for letter strings. Journal of Cognitive Neuroscience 17: 1532. doi: 10.1162/089892905774597218
[28]  Woodcock RW (1998) Woodcock Reading Mastery Tests – Revised/Normative Update (WRMT-R/NU). Circle Pines, MN: American Guidance Service.
[29]  Torgesen JK, Wagner RK, Rashotte CA (1999) Test of Word Reading Efficiency (TOWRE). Austin, TX: Pro-Ed.
[30]  Wagner RK, Torgesen JK, Rashotte CA (1999) Comprehensive Test of Phonological Processing. Austin, TX: Pro-Ed.
[31]  Kaufman AS, Kaufman NL (1997) Kaufman Brief Intelligence Test 2 (KBIT-2). Minneapolis, MN: NCS Pearson Assessments.
[32]  Tisdall MD, Hess AT, Reuter M, Meintjes EM, Fischl B, et al. (2012) Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magnetic Resonance in Medicine 68: 389–399. doi: 10.1002/mrm.23228
[33]  Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, et al. (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46: 786–802 doi:10.1016/j.neuroimage.2008.12.037.
[34]  Rossion B, Jacques C (2008) Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170. Neuroimage 39: 1959–1979 doi:10.1016/j.neuroimage.2007.10.011.
[35]  Holcomb PJ, Coffey SA, Neville HJ (1992) Visual and auditory sentence processing: A developmental analysis using event-related brain potentials. Developmental Neuropsychology 8: 203–241. doi: 10.1080/87565649209540525
[36]  Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24: 95–112 doi:10.1007/BF02289823.
[37]  Buchsbaum BR, Hickok G, Humphries C (2001) Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cognitive Science 25: 663–678 doi:10.1016/S0364-0213(01)00048-9.
[38]  Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nature Reviews Neuroscience 8: 393–402 doi:10.1038/nrn2113.
[39]  Simon O, Mangin JF, Cohen L, Le Bihan D, Dehaene S (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33: 475–487. doi: 10.1016/s0896-6273(02)00575-5
[40]  Brown TT, Lugar HM, Coalson RS, Miezin FM, Petersen SE, et al. (2005) Developmental changes in human cerebral functional organization for word generation. Cerebral Cortex 15: 275–290 doi:10.1093/cercor/bhh129.
[41]  Church JA, Coalson RS, Lugar HM, Petersen SE, Schlaggar BL (2008) A developmental fMRI study of reading and repetition reveals changes in phonological and visual mechanisms over age. Cerebral Cortex 18: 2054–2065 doi:bhm228.
[42]  Price CJ, Devlin JT (2011) The interactive account of ventral occipitotemporal contributions to reading. Trends in Cognitive Sciences 15: 246–253. doi: 10.1016/j.tics.2011.04.001
[43]  Schlaggar BL, Brown TT, Lugar HM, Visscher KM, Miezin FM, et al. (2002) Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296: 1476–1479 doi:10.1126/science.1069464.
[44]  Alivisatos B, Petrides M (1996) Functional activation of the human brain during mental rotation. Neuropsychologia 35: 111–118 doi:10.1016/S0028-3932(96)00083-8.
[45]  Cohen M, Kosslyn SM, Breiter HC, DiGirolamo GJ, Thompson WL, et al. (1996) Changes in cortical activity during mental rotation A mapping study using functional MRI. Brain 119: 89–100 doi:10.1093/brain/119.1.89.
[46]  Jordan K, Heinze HJ, Lutz K, Kanowski M, J?ncke L (2001) Cortical activations during the mental rotation of different visual objects. NeuroImage 13: 143–152 doi:10.1006/nimg.2000.0677.
[47]  Zacks JM (2008) Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience 20: 1–19. doi: 10.1162/jocn.2008.20.1.1
[48]  Kang HC, Burgund ED, Lugar HM, Petersen SE, Schlaggar BL (2003) Comparison of functional activation foci in children and adults using a common stereotactic space. NeuroImage 19: 16–28. doi: 10.1016/s1053-8119(03)00038-7
[49]  Ghosh SS, Kakunoori S, Augustinack J, Nieto-Castanon A, Kovelman I, et al. (2010) Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. NeuroImage 53: 85–93 doi:10.1016/j.neuroimage.2010.05.075.
[50]  Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, et al. (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. NeuroImage 60: 623–632. doi: 10.1016/j.neuroimage.2011.12.063
[51]  Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59: 2142–2154. doi: 10.1016/j.neuroimage.2011.10.018
[52]  Tarkiainen A, Cornelissen PL, Salmelin R (2002) Dynamics of visual feature analysis and object level processing in face versus letter-string perception. Brain 125: 1125–1136 doi:10.1093/brain/awf112.
[53]  Beaucousin V, Cassotti M, Simon G, Pineau A, Kostova M, et al. (2011) ERP evidence of a meaningfulness impact on visual global/local processing: When meaning captures attention. Neuropsychologia 49: 1258–1266 doi:10.1016/j.neuropsychologia.2011.01.039.
[54]  Rosazza C, Cai Q, Minati L, Paulignan Y, Nazir TA (2009) Early involvement of dorsal and ventral pathways in visual word recognition: An ERP study. Brain Research 1272: 32–44 doi:10.1016/j.brainres.2009.03.033.
[55]  Proverbio AM, Adorni R (2009) C1 and P1 visual responses to words are enhanced by attention to orthographic vs. lexical properties. Neuroscience Letters 463: 228–233 doi:10.1016/j.neulet.2009.08.001.
[56]  Wheeler DD (1970) Processes in word recognition. Cognitive Psychology 1: 59–85. doi: 10.1016/0010-0285(70)90005-8
[57]  Reicher GM (1969) Perceptual recognition as a function of meaningfulness of stimulus material. Journal of Experimental Psychology 81: 275–280. doi: 10.1037/h0027768
[58]  Hazan V, Barrett S (2000) The development of phonemic categorization in children aged 6–12. Journal of Phonetics 28: 377–396. doi: 10.1006/jpho.2000.0121
[59]  Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex of monkeys. Current Biology 5: 552–563 doi:10.1016/S0960-9822(95)00108-4.
[60]  Eger E, Henson RNA, Driver J, Dolan RJ (2004) BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention. Journal of Neurophysiology 92: 1241–1247 doi:10.1152/jn.00206.2004.
[61]  Vuilleumier P, Schwartz S, Duhoux S, Dolan RJ, Driver J (2005) Selective attention modulates neural substrates of repetition priming and “implicit” visual memory: Suppressions and enhancements revealed by fMRI. Journal of Cognitive Neuroscience 17: 1245–1260 doi:10.1162/0898929055002409.

Full-Text

comments powered by Disqus