All Title Author
Keywords Abstract

PLOS ONE  2014 

Comparative Genomic Hybridization Identifies Virulence Differences in Streptococcus suis

DOI: 10.1371/journal.pone.0087866

Full-Text   Cite this paper   Add to My Lib

Abstract:

Streptococcus suis is an important zoonotic pathogen. However, identification of virulent S. suis strains is complicated because of the high diversity of the species. Here we evaluated the genetic difference among S. suis strains using comparative genomic hybridization (CGH) and virulence variation in vivo and in vitro. We showed that different clades differed in their ability to activate TLR2/6 in vitro and their capacity to induce cytokine production in vivo as well as their resistance to phagocytosis and survival in vivo. Our data showed the S. suis strains tested can be classified into three groups having differing levels of virulence: epidemic and highly virulent strains were clustered into clade Ia (epidemic and highly virulent group, E/HV group), virulent strains were clustered into clade Ib (virulent group, V group), and intermediately or weakly virulent strains were clustered into other clades (intermediately or weakly virulent group, I/WV group). Our study provided further insight into the genomic and virulence variation of S. suis.

References

[1]  Fittipaldi N, Segura M, Grenier D, Gottschalk M (2012) Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 7: 259–279. doi: 10.2217/fmb.11.149
[2]  Gottschalk M, Segura M, Xu J (2007) Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Anim Health Res Rev 8: 29–45. doi: 10.1017/s1466252307001247
[3]  Berthelot-Herault F, Gottschalk M, Morvan H, Kobisch M (2005) Dilemma of virulence of Streptococcus suis: Canadian isolate 89-1591 characterized as a virulent strain using a standardized experimental model in pigs. Can J Vet Res 69: 236–240.
[4]  Fittipaldi N, Xu J, Lacouture S, Tharavichitkul P, Osaki M, et al. (2011) Lineage and virulence of Streptococcus suis serotype 2 isolates from North America. Emerg Infect Dis 17: 2239–2244. doi: 10.3201/eid1712.110609
[5]  Lachance C, Gottschalk M, Gerber PP, Lemire P, Xu J, et al.. (2013) Exacerbated Type II Interferon Response Drives Hypervirulence and Toxic Shock by an Emergent Epidemic Strain of Streptococcus suis. Infect Immun.
[6]  Rasmussen SR, Aarestrup FM, Jensen NE, Jorsal SE (1999) Associations of Streptococcus suis serotype 2 ribotype profiles with clinical disease and antimicrobial resistance. J Clin Microbiol 37: 404–408.
[7]  Vecht U, Wisselink HJ, Stockhofe-Zurwieden N, Smith HE (1996) Characterization of virulence of the Streptococcus suis serotype 2 reference strain Henrichsen S 735 in newborn gnotobiotic pigs. Vet Microbiol 51: 125–136. doi: 10.1016/0378-1135(96)00028-4
[8]  Charland N, Harel J, Kobisch M, Lacasse S, Gottschalk M (1998) Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiology 144 (Pt 2): 325–332. doi: 10.1099/00221287-144-2-325
[9]  Zheng X, Zheng H, Lan R, Ye C, Wang Y, et al. (2011) Identification of genes and genomic islands correlated with high pathogenicity in Streptococcus suis using whole genome tiling microarrays. PLoS One 6: e17987. doi: 10.1371/journal.pone.0017987
[10]  Ye C, Zheng H, Zhang J, Jing H, Wang L, et al. (2009) Clinical, experimental, and genomic differences between intermediately pathogenic, highly pathogenic, and epidemic Streptococcus suis. J Infect Dis 199: 97–107. doi: 10.1086/594370
[11]  Zheng H, Ye C, Segura M, Gottschalk M, Xu J (2008) Mitogenic effect contributes to increased virulence of Streptococcus suis sequence type 7 to cause streptococcal toxic shock-like syndrome. Clin Exp Immunol 153: 385–391. doi: 10.1111/j.1365-2249.2008.03722.x
[12]  Ye C, Zhu X, Jing H, Du H, Segura M, et al. (2006) Streptococcus suis sequence type 7 outbreak, Sichuan, China. Emerg Infect Dis 12: 1203–1208. doi: 10.3201/eid1708.060232
[13]  Ye C, Bai X, Zhang J, Jing H, Zheng H, et al. (2008) Spread of Streptococcus suis sequence type 7, China. Emerg Infect Dis 14: 787–791. doi: 10.3201/eid1405.070437
[14]  King SJ, Leigh JA, Heath PJ, Luque I, Tarradas C, et al. (2002) Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis: identification of virulent clones and potential capsular serotype exchange. J Clin Microbiol 40: 3671–3680. doi: 10.1128/jcm.40.10.3671-3680.2002
[15]  Zheng H, Sun H, Dominguez-Punaro ML, Bai X, Ji S, et al. (2013) Evaluation of the pathogenesis of meningitis caused by Streptococcus suis sequence type 7 using the infection of BV2 microglial cells. J Med Microbiol 62: 360–368. doi: 10.1099/jmm.0.046698-0
[16]  Zheng H, Luo X, Segura M, Sun H, Ye C, et al. (2012) The role of toll-like receptors in the pathogenesis of Streptococcus suis. Vet Microbiol 156: 147–156. doi: 10.1016/j.vetmic.2011.10.014
[17]  Zheng H, Punaro MC, Segura M, Lachance C, Rivest S, et al. (2011) Toll-like receptor 2 is partially involved in the activation of murine astrocytes by Streptococcus suis, an important zoonotic agent of meningitis. J Neuroimmunol 234: 71–83. doi: 10.1016/j.jneuroim.2011.02.005
[18]  Schreur PJ, Rebel JM, Smits MA, van Putten JP, Smith HE (2010) Differential activation of the Toll-like receptor 2/6 complex by lipoproteins of Streptococcus suis serotypes 2 and 9. Vet Microbiol 143: 363–370. doi: 10.1016/j.vetmic.2009.12.010
[19]  Hu P, Yang M, Zhang A, Wu J, Chen B, et al. (2011) Complete genome sequence of Streptococcus suis serotype 3 strain ST3. J Bacteriol 193: 3428–3429. doi: 10.1128/jb.05018-11
[20]  Baums CG, Verkuhlen GJ, Rehm T, Silva LM, Beyerbach M, et al. (2007) Prevalence of Streptococcus suis genotypes in wild boars of Northwestern Germany. Appl Environ Microbiol 73: 711–717. doi: 10.1128/aem.01800-06
[21]  de GA, Wisselink HJ, de Bree FM, Schultsz C, Baums CG, et al. (2011) Genetic diversity of Streptococcus suis isolates as determined by comparative genome hybridization. BMC Microbiol 11: 161. doi: 10.1186/1471-2180-11-161
[22]  Wu Z, Li M, Wang C, Li J, Lu N, et al. (2011) Probing genomic diversity and evolution of Streptococcus suis serotype 2 by NimbleGen tiling arrays. BMC Genomics 12: 219. doi: 10.1186/1471-2164-12-219
[23]  Chen C, Zhang W, Zheng H, Lan R, Wang H, et al. (2013) Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol 51: 2582–2591. doi: 10.1128/jcm.00535-13
[24]  Meijerink M, Ferrando ML, Lammers G, Taverne N, Smith HE, et al. (2012) Immunomodulatory effects of Streptococcus suis capsule type on human dendritic cell responses, phagocytosis and intracellular survival. PLoS One 7: e35849. doi: 10.1371/journal.pone.0035849
[25]  Dominguez-Punaro ML, Segura M, Contreras I, Lachance C, Houde M, et al. (2010) In vitro characterization of the microglial inflammatory response to Streptococcus suis, an important emerging zoonotic agent of meningitis. Infect Immun 78: 5074–5085. doi: 10.1128/iai.00698-10
[26]  Segura M, Gottschalk M, Olivier M (2004) Encapsulated Streptococcus suis inhibits activation of signaling pathways involved in phagocytosis. Infect Immun 72: 5322–5330. doi: 10.1128/iai.72.9.5322-5330.2004
[27]  Benga L, Fulde M, Neis C, Goethe R, Valentin-Weigand P (2008) Polysaccharide capsule and suilysin contribute to extracellular survival of Streptococcus suis co-cultivated with primary porcine phagocytes. Vet Microbiol 132: 211–219. doi: 10.1016/j.vetmic.2008.05.005
[28]  Abe K, Obana N, Nakamura K (2010) Effects of depletion of RNA-binding protein Tex on the expression of toxin genes in Clostridium perfringens. Biosci Biotechnol Biochem 74: 1564–1571. doi: 10.1271/bbb.100135
[29]  He X, Thornton J, Carmicle-Davis S, McDaniel LS (2006) Tex, a putative transcriptional accessory factor, is involved in pathogen fitness in Streptococcus pneumoniae. Microb Pathog 41: 199–206. doi: 10.1016/j.micpath.2006.07.001
[30]  Takamatsu D, Nishino H, Ishiji T, Ishii J, Osaki M, et al. (2009) Genetic organization and preferential distribution of putative pilus gene clusters in Streptococcus suis. Vet Microbiol 138: 132–139. doi: 10.1016/j.vetmic.2009.02.013
[31]  Fittipaldi N, Fuller TE, Teel JF, Wilson TL, Wolfram TJ, et al. (2009) Serotype distribution and production of muramidase-released protein, extracellular factor and suilysin by field strains of Streptococcus suis isolated in the United States. Vet Microbiol 139: 310–317. doi: 10.1016/j.vetmic.2009.06.024

Full-Text

comments powered by Disqus