All Title Author
Keywords Abstract

PLOS ONE  2014 

CMV Latent Infection Improves CD8+ T Response to SEB Due to Expansion of Polyfunctional CD57+ Cells in Young Individuals

DOI: 10.1371/journal.pone.0088538

Full-Text   Cite this paper   Add to My Lib


Cytomegalovirus (CMV) latent infection has a deleterious effect on the efficacy of influenza vaccination in the elderly, suggesting that CMV restricts immunological diversity impairing the immune system functionality in old age. Polyfunctional T cells produce multiple cytokines and higher amounts than mono-functional T cells. High number of polyfunctional T cells correlates with better prognosis during infection. Thus, the efficiency of T cell response associates with quality (polyfunctionality) rather than with quantity (percentage of T cells). We analyze the effect of CMV infection on CD8+ T cells polyfunctionality ―degranulation (CD107a), IFN-gamma and TNF-alpha production―, from young CMV-seropositive and CMV-seronegative individuals and in middle age CMV-seropositive donors, in response to Staphylococcal Enterotoxin B (SEB). Our results show a higher percentage of polyfunctional CD8+ T cells in young CMV-seropositive individuals compared to CMV-seronegative. Also, we find an expansion of CD8+CD57+ T cells in CMV-seropositive individuals, which are more polyfunctional than CD8+CD57? cells. In middle age individuals there is a higher frequency of SEB-responding CD8+ T cells, mainly TNF-alpha or TNF-alpha/IFN-gamma producers, whereas the percentage of polyfunctional cells (IFN-gamma/TNF-alpha/CD107a) is similar to the percentages found in young CMV-seropositive. Therefore, whereas it has been shown that CMV latent infection can be detrimental for immune response in old individuals, our results indicate that CMV-seropositivity is associated to higher levels of polyfunctional CD8+ T cells in young and middle age donors. This increase in polyfunctionality, which can provide an immunological advantage in the response to other pathogens, is due to a CD8+CD57+ T cell expansion in CMV-seropositive individuals and it is independent of age. Conversely, age could contribute to the inflammation found in old individuals by increasing the percentage of cells producing pro-inflammatory cytokines. These findings highlight the necessity of further studies on the benefits/detrimental effects of CMV infection in the response to vaccination and other infections.


[1]  Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20: 202–213. doi: 10.1002/rmv.655
[2]  de Ory F, Ramírez R, García Comas L, León P, Sagües MJ, et al. (2004) Is there a change in cytomegalovirus seroepidemiology in Spain? Eur J Epidemiol 19: 85–89. doi: 10.1023/b:ejep.0000013253.56343.6f
[3]  Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, et al. (2002) Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169: 1984–1992. doi: 10.4049/jimmunol.169.4.1984
[4]  Ouyang Q, Wagner WM, Zheng W, Wikby A, Remarque EJ, et al. (2004) Dysfunctional CMV-specific CD8(+) T cells accumulate in the elderly. Exp Gerontol 39: 607–613. doi: 10.1016/j.exger.2003.11.016
[5]  Koch S, Solana R, Dela Rosa O, Pawelec G (2006) Human cytomegalovirus infection and T cell immunosenescence: a mini review. Mech Ageing Dev 127: 538–543. doi: 10.1016/j.mad.2006.01.011
[6]  Vescovini R, Telera A, Fagnoni FF, Biasini C, Medici MC, et al. (2004) Different contribution of EBV and CMV infections in very long-term carriers to age-related alterations of CD8+ T cells. Exp Gerontol 39: 1233–1243. doi: 10.1016/j.exger.2004.04.004
[7]  Ouyang Q, Wagner WM, Wikby A, Walter S, Aubert G, et al. (2003) Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 23: 247–257.
[8]  Pawelec G, McElhaney JE, Aiello AE, Derhovanessian E (2012) The impact of CMV infection on survival in older humans. Curr Opin Immunol 24: 507–511. doi: 10.1016/j.coi.2012.04.002
[9]  Solana R, Tarazona R, Aiello AE, Akbar AN, Appay V, et al. (2012) CMV and Immunosenescence: from basics to clinics. Immun Ageing 9: 23. doi: 10.1186/1742-4933-9-23
[10]  Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, et al. (2011) Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One 6: e16103. doi: 10.1371/journal.pone.0016103
[11]  Olsson J, Wikby A, Johansson B, L?fgren S, Nilsson BO, et al. (2000) Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 121: 187–201. doi: 10.1016/s0047-6374(00)00210-4
[12]  Wikby A, Maxson P, Olsson J, Johansson B, Ferguson FG (1998) Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study. Mech Ageing Dev 102: 187–198. doi: 10.1016/s0047-6374(97)00151-6
[13]  Ferrando-Martinez S, Romero-Sanchez MC, Solana R, Delgado J, de la Rosa R, et al. (2013) Thymic function failure and C-reactive protein levels are independent predictors of all-cause mortality in healthy elderly humans. Age (Dordr) 35: 251–259. doi: 10.1007/s11357-011-9341-2
[14]  Weng NP, Akbar AN, Goronzy J (2009) CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol 30: 306–312. doi: 10.1016/
[15]  Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19: 1680–1698. doi: 10.2174/1381612811319090016
[16]  Pawelec G, Derhovanessian E (2011) Role of CMV in immune senescence. Virus Res 157: 175–179. doi: 10.1016/j.virusres.2010.09.010
[17]  Mekker A, Tchang VS, Haeberli L, Oxenius A, Trkola A, et al. (2012) Immune senescence: relative contributions of age and cytomegalovirus infection. PLoS Pathog 8: e1002850. doi: 10.1371/journal.ppat.1002850
[18]  Cicin-Sain L, Brien JD, Uhrlaub JL, Drabig A, Marandu TF, et al. (2012) Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog 8: e1002849. doi: 10.1371/journal.ppat.1002849
[19]  Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, et al. (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447: 326–329. doi: 10.1038/nature05762
[20]  White DW, Suzanne Beard R, Barton ES (2012) Immune modulation during latent herpesvirus infection. Immunol Rev 245: 189–208. doi: 10.1111/j.1600-065x.2011.01074.x
[21]  Critchfield JW, Lemongello D, Walker DH, Garcia JC, Asmuth DM, et al. (2007) Multifunctional human immunodeficiency virus (HIV) gag-specific CD8+ T-cell responses in rectal mucosa and peripheral blood mononuclear cells during chronic HIV type 1 infection. J Virol 81: 5460–5471. doi: 10.1128/jvi.02535-06
[22]  Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, et al. (2007) Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med 204: 1405–1416. doi: 10.1084/jem.20062363
[23]  Wallace DL, Masters JE, De Lara CM, Henson SM, Worth A, et al. (2011) Human cytomegalovirus-specific CD8(+) T-cell expansions contain long-lived cells that retain functional capacity in both young and elderly subjects. Immunology 132: 27–38. doi: 10.1111/j.1365-2567.2010.03334.x
[24]  Lachmann R, Bajwa M, Vita S, Smith H, Cheek E, et al. (2012) Polyfunctional T cells accumulate in large human cytomegalovirus-specific T cell responses. J Virol 86: 1001–1009. doi: 10.1128/jvi.00873-11
[25]  Lelic A, Verschoor CP, Ventresca M, Parsons R, Evelegh C, et al. (2012) The Polyfunctionality of Human Memory CD8+ T Cells Elicited by Acute and Chronic Virus Infections Is Not Influenced by Age. PLoS Pathog 8: e1003076. doi: 10.1371/journal.ppat.1003076
[26]  Nebbia G, Mattes FM, Smith C, Hainsworth E, Kopycinski J, et al. (2008) Polyfunctional cytomegalovirus-specific CD4+ and pp65 CD8+ T cells protect against high-level replication after liver transplantation. Am J Transplant 8: 2590–2599. doi: 10.1111/j.1600-6143.2008.02425.x
[27]  Nesbit L, Johnson SM, Pappagianis D, Ampel NM (2010) Polyfunctional T lymphocytes are in the peripheral blood of donors naturally immune to coccidioidomycosis and are not induced by dendritic cells. Infect Immun 78: 309–315. doi: 10.1128/iai.00953-09
[28]  Welsh RM, Che JW, Brehm MA, Selin LK (2010) Heterologous immunity between viruses. Immunol Rev 235: 244–266.
[29]  Miles DJ, Sanneh M, Holder B, Crozier S, Nyamweya S, et al. (2008) Cytomegalovirus infection induces T-cell differentiation without impairing antigen-specific responses in Gambian infants. Immunology 124: 388–400. doi: 10.1111/j.1365-2567.2007.02787.x
[30]  Tarazona R, DelaRosa O, Alonso C, Ostos B, Espejo J, et al. (2000) Increased expression of NK cell markers on T lymphocytes in aging and chronic activation of the immune system reflects the accumulation of effector/senescent T cells. Mech Ageing Dev 121: 77–88. doi: 10.1016/s0047-6374(00)00199-8
[31]  Strioga M, Pasukoniene V, Characiejus D (2011) CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology 134: 17–32. doi: 10.1111/j.1365-2567.2011.03470.x
[32]  Effros RB (2005) The role of CD8 T cell replicative senescence in human aging. Discov Med 5: 293–297. doi: 10.1111/j.0105-2896.2005.00259.x
[33]  Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, et al. (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101: 2711–2720. doi: 10.1182/blood-2002-07-2103
[34]  Chong LK, Aicheler RJ, Llewellyn-Lacey S, Tomasec P, Brennan P, et al. (2008) Proliferation and interleukin 5 production by CD8hi CD57+ T cells. Eur J Immunol 38: 995–1000. doi: 10.1002/eji.200737687
[35]  Bandrés E, Merino J, Vázquez B, Inogés S, Moreno C, et al. (2000) The increase of IFN-gamma production through aging correlates with the expanded CD8(+high)CD28(?)CD57(+) subpopulation. Clin Immunol 96: 230–235. doi: 10.1006/clim.2000.4894
[36]  Merino J, Martínez-González MA, Rubio M, Inogés S, Sánchez-Ibarrola A, et al. (1998) Progressive decrease of CD8high+ CD28+ CD57? cells with ageing. Clin Exp Immunol 112: 48–51. doi: 10.1046/j.1365-2249.1998.00551.x
[37]  DelaRosa O, Pawelec G, Peralbo E, Wikby A, Mariani E, et al. (2006) Immunological biomarkers of ageing in man: changes in both innate and adaptive immunity are associated with health and longevity. Biogerontology 7: 471–481. doi: 10.1007/s10522-006-9062-6
[38]  Almanzar G, Schwaiger S, Jenewein B, Keller M, Herndler-Brandstetter D, et al. (2005) Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol 79: 3675–3683. doi: 10.1128/jvi.79.6.3675-3683.2005
[39]  Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-Loebenstein B, et al. (2005) Human immunosenescence: is it infectious? Immunol Rev 205: 257–268. doi: 10.1111/j.0105-2896.2005.00271.x
[40]  Solana R, Pawelec G, Tarazona R (2006) Aging and innate immunity. Immunity 24: 491–494. doi: 10.1016/j.immuni.2006.05.003
[41]  Trzonkowski P, My?liwska J, Szmit E, Wieckiewicz J, Lukaszuk K, et al. (2003) Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination–an impact of immunosenescence. Vaccine 21: 3826–3836. doi: 10.1016/s0264-410x(03)00309-8
[42]  Unanue ER (2007) Viral infections and nonspecific protection–good or bad? N Engl J Med 357: 1345–1346. doi: 10.1056/nejmcibr074519
[43]  Betts MR, Koup RA (2004) Detection of T-cell degranulation: CD107a and b. Methods Cell Biol 75: 497–512. doi: 10.1016/s0091-679x(04)75020-7
[44]  Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, et al. (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107: 4781–4789. doi: 10.1182/blood-2005-12-4818


comments powered by Disqus