All Title Author
Keywords Abstract

PLOS ONE  2014 

Evaluation of Candidate Nephropathy Susceptibility Genes in a Genome-Wide Association Study of African American Diabetic Kidney Disease

DOI: 10.1371/journal.pone.0088273

Full-Text   Cite this paper   Add to My Lib


Type 2 diabetes (T2D)-associated end-stage kidney disease (ESKD) is a complex disorder resulting from the combined influence of genetic and environmental factors. This study contains a comprehensive genetic analysis of putative nephropathy loci in 965 African American (AA) cases with T2D-ESKD and 1029 AA population-based controls extending prior findings. Analysis was based on 4,341 directly genotyped and imputed single nucleotide polymorphisms (SNPs) in 22 nephropathy candidate genes. After admixture adjustment and correction for multiple comparisons, 37 SNPs across eight loci were significantly associated (1.6E-05


[1]  de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, et al. (2011) Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 305: 2532–2539. doi: 10.1001/jama.2011.861
[2]  System URD (2010) USRDS 2010 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: US Renal Data System.
[3]  Palmer ND, Freedman BI (2012) Insights into the genetic architecture of diabetic nephropathy. Curr Diab Rep 12: 423–431. doi: 10.1007/s11892-012-0279-2
[4]  Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, et al. (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329: 841–845. doi: 10.1126/science.1193032
[5]  McDonough CW, Palmer ND, Hicks PJ, Roh BH, An SS, et al. (2011) A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int 79: 563–572. doi: 10.1038/ki.2010.467
[6]  Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047–1053. doi: 10.2337/diacare.27.5.1047
[7]  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678.
[8]  Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, et al. (2008) MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40: 1175–1184. doi: 10.1038/ng.226
[9]  Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, et al. (2011) APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 22: 2129–2137. doi: 10.1681/asn.2011040388
[10]  Vardarli I, Baier LJ, Hanson RL, Akkoyun I, Fischer C, et al. (2002) Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3-23. Kidney Int 62: 2176–2183. doi: 10.1046/j.1523-1755.2002.00663.x
[11]  Iyengar SK, Abboud HE, Goddard KA, Saad MF, Adler SG, et al. (2007) Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND). Diabetes 56: 1577–1585. doi: 10.2337/db06-1154
[12]  Bowden DW, Colicigno CJ, Langefeld CD, Sale MM, Williams A, et al. (2004) A genome scan for diabetic nephropathy in African Americans. Kidney Int 66: 1517–1526. doi: 10.1111/j.1523-1755.2004.00915.x
[13]  Janssen B, Hohenadel D, Brinkkoetter P, Peters V, Rind N, et al. (2005) Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54: 2320–2327. doi: 10.2337/diabetes.54.8.2320
[14]  Crowley SD, Coffman TM (2012) Recent advances involving the renin-angiotensin system. Exp Cell Res 318: 1049–1056. doi: 10.1016/j.yexcr.2012.02.023
[15]  Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, et al. (2009) Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes 58: 1403–1410. doi: 10.2337/db08-1514
[16]  Palmer ND, McDonough CW, Hicks PJ, Roh BH, Wing MR, et al. (2012) A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One 7: e29202. doi: 10.1371/journal.pone.0029202
[17]  Tang H, Peng J, Wang P, Risch NJ (2005) Estimation of individual admixture: analytical and study design considerations. Genet Epidemiol 28: 289–301. doi: 10.1002/gepi.20064
[18]  Keene KL, Mychaleckyj JC, Leak TS, Smith SG, Perlegas PS, et al. (2008) Exploration of the utility of ancestry informative markers for genetic association studies of African Americans with type 2 diabetes and end stage renal disease. Hum Genet 124: 147–154. doi: 10.1007/s00439-008-0532-6
[19]  Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA, et al. (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74: 979–1000. doi: 10.1086/420871
[20]  Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, et al. (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40: 204–210. doi: 10.1038/ng.81
[21]  Freedman BI, Langefeld CD, Lu L, Divers J, Comeau ME, et al. (2011) Differential effects of MYH9 and APOL1 risk variants on FRMD3 Association with Diabetic ESRD in African Americans. PLoS Genet 7: e1002150. doi: 10.1371/journal.pgen.1002150
[22]  Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb) 95: 221–227. doi: 10.1038/sj.hdy.6800717
[23]  Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38: 209–213. doi: 10.1038/ng1706
[24]  System USRD (2013) USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.


comments powered by Disqus