全部 标题 作者
关键词 摘要

PLOS ONE  2014 

Fibroblast Activation Protein (FAP) Is Essential for the Migration of Bone Marrow Mesenchymal Stem Cells through RhoA Activation

DOI: 10.1371/journal.pone.0088772

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The ability of human bone marrow mesenchymal stem cells (BM-MSCs) to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP) is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. Principal Findings We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β) and transforming growth factor-beta (TGF-β) upregulated FAP expression, which coincided with better BM-MSC migration. Conclusions Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.

References

[1]  Rosenblum JS, Kozarich JW (2003) Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr Opin Chem Biol 7: 496–504. doi: 10.1016/s1367-5931(03)00084-x
[2]  Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, et al. (1994) Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci U S A 91: 5657–5661. doi: 10.1073/pnas.91.12.5657
[3]  Rettig WJ, Garin-Chesa P, Beresford HR, Oettgen HF, Melamed MR, et al. (1988) Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc Natl Acad Sci U S A 85: 3110–3114. doi: 10.1073/pnas.85.9.3110
[4]  Huber MA, Kraut N, Park JE, Schubert RD, Rettig WJ, et al. (2003) Fibroblast activation protein: differential expression and serine protease activity in reactive stromal fibroblasts of melanocytic skin tumors. J Invest Dermatol 120: 182–188. doi: 10.1046/j.1523-1747.2003.12035.x
[5]  Chen WT, Kelly T (2003) Seprase complexes in cellular invasiveness. Cancer Metastasis Rev 22: 259–269.
[6]  Chen WT (2003) DPPIV and seprase in cancer invasion and angiogenesis. Adv Exp Med Biol 524: 197–203. doi: 10.1007/0-306-47920-6_24
[7]  Cheng JD, Dunbrack RL Jr, Valianou M, Rogatko A, Alpaugh RK, et al. (2002) Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res 62: 4767–4772.
[8]  Huang Y, Wang S, Kelly T (2004) Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer. Cancer Res 64: 2712–2716. doi: 10.1158/0008-5472.can-03-3184
[9]  Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, et al. (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330: 827–830. doi: 10.1126/science.1195300
[10]  Aertgeerts K, Levin I, Shi L, Snell GP, Jennings A, et al. (2005) Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha. J Biol Chem 280: 19441–19444. doi: 10.1074/jbc.c500092200
[11]  Lee KN, Jackson KW, Christiansen VJ, Lee CS, Chun JG, et al. (2006) Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 107: 1397–1404. doi: 10.1182/blood-2005-08-3452
[12]  Lee KN, Jackson KW, Christiansen VJ, Chung KH, McKee PA (2004) A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood 103: 3783–3788. doi: 10.1182/blood-2003-12-4240
[13]  Christiansen VJ, Jackson KW, Lee KN, McKee PA (2007) Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch Biochem Biophys 457: 177–186. doi: 10.1016/j.abb.2006.11.006
[14]  Mueller SC, Ghersi G, Akiyama SK, Sang QX, Howard L, et al. (1999) A novel protease-docking function of integrin at invadopodia. J Biol Chem 274: 24947–24952. doi: 10.1074/jbc.274.35.24947
[15]  Artym VV, Kindzelskii AL, Chen WT, Petty HR (2002) Molecular proximity of seprase and the urokinase-type plasminogen activator receptor on malignant melanoma cell membranes: dependence on beta1 integrins and the cytoskeleton. Carcinogenesis 23: 1593–1601. doi: 10.1093/carcin/23.10.1593
[16]  Monsky WL, Lin CY, Aoyama A, Kelly T, Akiyama SK, et al. (1994) A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 54: 5702–5710.
[17]  Lee HO, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E, et al. (2011) FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11: 245. doi: 10.1186/1471-2407-11-245
[18]  Bae S, Park CW, Son HK, Ju HK, Paik D, et al. (2008) Fibroblast activation protein alpha identifies mesenchymal stromal cells from human bone marrow. Br J Haematol 142: 827–830. doi: 10.1111/j.1365-2141.2008.07241.x
[19]  Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC, et al. (2013) Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med 210: 1125–1135. doi: 10.1084/jem.20130110
[20]  Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317. doi: 10.1080/14653240600855905
[21]  Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110: 3499–3506. doi: 10.1182/blood-2007-02-069716
[22]  Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105: 93–98. doi: 10.1161/hc0102.101442
[23]  Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, et al. (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180: 2581–2587. doi: 10.4049/jimmunol.180.4.2581
[24]  Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, et al. (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99: 8932–8937. doi: 10.1073/pnas.132252399
[25]  Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, et al. (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30: 42–48. doi: 10.1016/s0301-472x(01)00769-x
[26]  Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, et al. (2004) In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40: 1275–1284. doi: 10.1002/hep.20469
[27]  Tang HK, Tang HY, Hsu SC, Chu YR, Chien CH, et al. (2009) Biochemical properties and expression profile of human prolyl dipeptidase DPP9. Arch Biochem Biophys 485: 120–127. doi: 10.1016/j.abb.2009.02.015
[28]  Chen HW, Chen HY, Wang LT, Wang FH, Fang LW, et al. (2013) Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncogene chemokines. J Immunol 190: 5065–5077. doi: 10.4049/jimmunol.1202775
[29]  Ruster B, Grace B, Seitz O, Seifried E, Henschler R (2005) Induction and detection of human mesenchymal stem cell migration in the 48-well reusable transwell assay. Stem Cells Dev 14: 231–235. doi: 10.1089/scd.2005.14.231
[30]  Tsai TY, Yeh TK, Chen X, Hsu T, Jao YC, et al. (2010) Substituted 4-carboxymethylpyroglutamic acid diamides as potent and selective inhibitors of fibroblast activation protein. J Med Chem 53: 6572–6583. doi: 10.1021/jm1002556
[31]  Poplawski SE, Lai JH, Li Y, Jin Z, Liu Y, et al. (2013) Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J Med Chem 56: 3467–3477. doi: 10.1021/jm400351a
[32]  Chen HY, Shen CH, Tsai YT, Lin FC, Huang YP, et al. (2004) Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin. Mol Cell Biol 24: 10558–10572. doi: 10.1128/mcb.24.24.10558-10572.2004
[33]  Dolznig H, Schweifer N, Puri C, Kraut N, Rettig WJ, et al. (2005) Characterization of cancer stroma markers: in silico analysis of an mRNA expression database for fibroblast activation protein and endosialin. Cancer Immun 5: 10.
[34]  Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, et al. (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274: 36505–36512. doi: 10.1074/jbc.274.51.36505
[35]  Fu X, Han B, Cai S, Lei Y, Sun T, et al. (2009) Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing. Wound Repair Regen 17: 185–191. doi: 10.1111/j.1524-475x.2009.00454.x
[36]  Rattigan Y, Hsu JM, Mishra PJ, Glod J, Banerjee D (2010) Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res 316: 3417–3424. doi: 10.1016/j.yexcr.2010.07.002
[37]  Jaganathan BG, Ruester B, Dressel L, Stein S, Grez M, et al. (2007) Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 25: 1966–1974. doi: 10.1634/stemcells.2007-0167
[38]  Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509–514. doi: 10.1126/science.279.5350.509
[39]  Zhang F, Tsai S, Kato K, Yamanouchi D, Wang C, et al. (2009) Transforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells. J Biol Chem 284: 17564–17574. doi: 10.1074/jbc.m109.013987
[40]  Efron PA, Moldawer LL (2004) Cytokines and wound healing: the role of cytokine and anticytokine therapy in the repair response. J Burn Care Rehabil 25: 149–160. doi: 10.1097/01.bcr.0000111766.97335.34
[41]  Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, et al. (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25: 1737–1745. doi: 10.1634/stemcells.2007-0054
[42]  Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, et al. (2007) Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 83: 241–247. doi: 10.1007/s11060-007-9332-4
[43]  Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, et al. (2010) Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant 19: 667–679. doi: 10.3727/096368910x508762
[44]  Fox JM, Chamberlain G, Ashton BA, Middleton J (2007) Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 137: 491–502. doi: 10.1111/j.1365-2141.2007.06610.x
[45]  Ries C, Egea V, Karow M, Kolb H, Jochum M, et al. (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109: 4055–4063. doi: 10.1182/blood-2006-10-051060
[46]  Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420: 629–635. doi: 10.1038/nature01148
[47]  Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355: 965–970. doi: 10.1098/rstb.2000.0632
[48]  Cox EA, Sastry SK, Huttenlocher A (2001) Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the Rho family of GTPases. Mol Biol Cell 12: 265–277. doi: 10.1091/mbc.12.2.265
[49]  Allen WE, Zicha D, Ridley AJ, Jones GE (1998) A role for Cdc42 in macrophage chemotaxis. J Cell Biol 141: 1147–1157. doi: 10.1083/jcb.141.5.1147
[50]  Niggli V (1999) Rho-kinase in human neutrophils: a role in signalling for myosin light chain phosphorylation and cell migration. FEBS Lett 445: 69–72. doi: 10.1016/s0014-5793(99)00098-8
[51]  Wicki A, Niggli V (2001) The Rho/Rho-kinase and the phosphatidylinositol 3-kinase pathways are essential for spontaneous locomotion of Walker 256 carcinosarcoma cells. Int J Cancer 91: 763–771. doi: 10.1002/1097-0215(200102)9999:9999<::aid-ijc1128>3.0.co;2-b
[52]  Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, et al. (2003) Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302: 445–449. doi: 10.1126/science.1088485
[53]  Ramirez-Montagut T, Blachere NE, Sviderskaya EV, Bennett DC, Rettig WJ, et al. (2004) FAPalpha, a surface peptidase expressed during wound healing, is a tumor suppressor. Oncogene 23: 5435–5446. doi: 10.1038/sj.onc.1207730
[54]  Huang Y, Simms AE, Mazur A, Wang S, Leon NR, et al. (2011) Fibroblast activation protein-alpha promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin Exp Metastasis 28: 567–579. doi: 10.1007/s10585-011-9392-x
[55]  Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116: 167–179. doi: 10.1016/s0092-8674(04)00003-0
[56]  Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147: 1009–1022. doi: 10.1083/jcb.147.5.1009
[57]  O'Connor KL, Chen M, Towers LN (2012) Integrin alpha6beta4 cooperates with LPA signaling to stimulate Rac through AKAP-Lbc-mediated RhoA activation. Am J Physiol Cell Physiol 302: C605–614. doi: 10.1152/ajpcell.00095.2011
[58]  Kelly T (2005) Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resist Updat 8: 51–58. doi: 10.1016/j.drup.2005.03.002
[59]  Ohnuma K, Uchiyama M, Yamochi T, Nishibashi K, Hosono O, et al. (2007) Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1. J Biol Chem 282: 10117–10131. doi: 10.1074/jbc.m609157200
[60]  Huveneers S, Danen EH (2009) Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci 122: 1059–1069. doi: 10.1242/jcs.039446
[61]  Gout SP, Jacquier-Sarlin MR, Rouard-Talbot L, Rousselle P, Block MR (2001) RhoA-dependent switch between alpha2beta1 and alpha3beta1 integrins is induced by laminin-5 during early stage of HT-29 cell differentiation. Mol Biol Cell 12: 3268–3281. doi: 10.1091/mbc.12.10.3268
[62]  Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13: 781–792.
[63]  Overall CM, Wrana JL, Sodek J (1991) Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem 266: 14064–14071.
[64]  Ries C, Kolb H, Petrides PE (1994) Regulation of 92-kD gelatinase release in HL-60 leukemia cells: tumor necrosis factor-alpha as an autocrine stimulus for basal- and phorbol ester-induced secretion. Blood 83: 3638–3646.
[65]  Ries C, Petrides PE (1995) Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler 376: 345–355.
[66]  Chen H, Yang WW, Wen QT, Xu L, Chen M (2009) TGF-beta induces fibroblast activation protein expression; fibroblast activation protein expression increases the proliferation, adhesion, and migration of HO-8910PM [corrected]. Exp Mol Pathol 87: 189–194. doi: 10.1016/j.yexmp.2009.09.001

Full-Text

comments powered by Disqus