All Title Author
Keywords Abstract

PLOS ONE  2014 

Extremely Low Frequency Magnetic Field (50 Hz, 0.5 mT) Reduces Oxidative Stress in the Brain of Gerbils Submitted to Global Cerebral Ischemia

DOI: 10.1371/journal.pone.0088921

Full-Text   Cite this paper   Add to My Lib

Abstract:

Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7 days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were examined in the forebrain cortex, striatum and hippocampus on the 7th (immediate effect of ELF-MF) and 14th day after reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7th and 14th day after reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7th day after reperfusion, but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14th day after reperfusion, oxidative stress parameters in the brain of these gerbils were mostly at the control levels. Applied ELF-MF decreases oxidative stress induced by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in the brain. The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral ischemia.

References

[1]  Nita DA, Nita V, Spulber S, Moldovan M, Popa DP, et al. (2001) Oxidative damage following cerebral ischemia depends on reperfusion - a biochemical study in rat. J Cell Mol Med 5: 163–170. doi: 10.1111/j.1582-4934.2001.tb00149.x
[2]  Lewén A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17: 871–890. doi: 10.1089/neu.2000.17.871
[3]  Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21: 2–14. doi: 10.1097/00004647-200101000-00002
[4]  Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5: 597–607. doi: 10.1089/152308603770310266
[5]  Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215: 213–219. doi: 10.1111/j.1432-1033.1993.tb18025.x
[6]  Nishino T, Tamura I (1991) The mechanism of conversion of xanthine dehydrogenase to oxidase and the role of enzyme in reperfusion injury. Adv Exp Med Biol 309A: 327–333. doi: 10.1007/978-1-4899-2638-8_74
[7]  Beetsch JW, Park TS, Dugan LL, Shah AR, Gidday JM (1998) Xanthine oxidase-derived superoxide causes reoxygenation injury of ischemic cerebral endothelial cells. Brain Res 786: 89–95. doi: 10.1016/s0006-8993(97)01407-8
[8]  Katsuki H, Okuda S (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 46: 607–636. doi: 10.1016/0301-0082(95)00016-o
[9]  Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, et al. (2001) Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci USA 98: 11569–11574. doi: 10.1073/pnas.181213498
[10]  Gonzalez CL, Gharbawie OA, Kolb B (2006) Chronic low-dose administration of nicotine facilitates recovery and synaptic change after focal ischemia in rats. Neuropharmacology 50: 777–787. doi: 10.1016/j.neuropharm.2005.11.018
[11]  Kato H, Takahashi A, Itoyama Y (2003) Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull 60: 215–221. doi: 10.1016/s0361-9230(03)00036-4
[12]  Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50: 287–298. doi: 10.1002/glia.20181
[13]  Simkó M, Droste S, Kriehuber R, Weiss DG (2001) Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Eur J Cell Biol 80: 562–566. doi: 10.1078/0171-9335-00187
[14]  Simkó M, Mattsson MO (2004) Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem 93: 83–92. doi: 10.1002/jcb.20198
[15]  Jelenkovi? A, Jana? B, Pe?i? V, Jovanovi? MD, Vasiljevi? I, et al. (2005) The effects of exposure to extremely low-frequency magnetic field and amphetamine on the reduced glutathione in the brain. Ann NY Acad Sci 1048: 377–380. doi: 10.1196/annals.1342.044
[16]  Jelenkovi? A, Jana? B, Pe?i? V, Jovanovi? DM, Vasiljevi? I, et al. (2006) Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull 68: 355–360. doi: 10.1016/j.brainresbull.2005.09.011
[17]  Falone S, Grossi MR, Cinque B, D’Angelo B, Tettamanti E, et al. (2007) Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int J Biochem Cell Biol 39: 2093–2106. doi: 10.1016/j.biocel.2007.06.001
[18]  Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D’Alessandro A, et al. (2009) Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol 219: 334–343. doi: 10.1002/jcp.21674
[19]  Rau? S, Selakovi? V, Radenovi? L, Proli? Z, Jana? B (2012) Extremely low frequency magnetic field induced changes in motor behaviour of gerbils submitted to global cerebral ischemia. Behav Brain Res 228: 241–246. doi: 10.1016/j.bbr.2011.10.046
[20]  Rau? S, Selakovi? V, Manojlovi?-Stojanoski M, Radenovi? L, Proli? Z, et al. (2013) Response of hippocampal neurons and glial cells to alternating magnetic field in gerbils submitted to global cerebral ischemia. Neurotox Res 23: 79–91. doi: 10.1007/s12640-012-9333-8
[21]  Levy D, Brierley J (1974) Communications between vertebro-basilar and carotid arterial circulations in the gerbil. Exp Neurol 45: 503–508. doi: 10.1016/0014-4886(74)90155-1
[22]  Guevara I, Iwanejko J, Dembińska-Kie? A, Pankiewicz J, Wanat A, et al. (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 274: 177–188. doi: 10.1016/s0009-8981(98)00060-6
[23]  Spitz DR, Oberley LW (1989) An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 179: 8–18. doi: 10.1016/0003-2697(89)90192-9
[24]  Misra HP, Fridovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247: 3170–3175.
[25]  Rehncrona S (1980) Biochemical factors influencing recovery in brain ischemia. Acta Neurol Scand Suppl 78: 167–174.
[26]  Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.
[27]  Warner MA, Neill KH, Nadler JV, Crain BJ (1991) Regionally selective effects of NMDA receptor antagonists against ischemic brain damage in the gerbil. J Cereb Blood Flow Metab 11: 600–610. doi: 10.1038/jcbfm.1991.110
[28]  Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9: 119–131. doi: 10.1111/j.1750-3639.1999.tb00214.x
[29]  Selakovi? V, Jana? B, Radenovi? L (2010) MK-801 effect on regional cerebral oxidative stress rate induced by different duration of global ischemia in gerbils. Mol Cell Biochem 342: 35–50. doi: 10.1007/s11010-010-0466-x
[30]  Dekanski D, Selakovi? V, Piperski V, Radulovi? Z, Koreni? A, et al. (2011) Protective effect of olive leaf extract on hippocampal injury induced by transient global cerebral ischemia and reperfusion in Mongolian gerbils. Phytomedicine 18: 1137–1143. doi: 10.1016/j.phymed.2011.05.010
[31]  Selakovi? V, Koreni? A, Radenovi? L (2011) Spatial and temporal patterns of oxidative stress in the brain of gerbils submitted to different duration of global cerebral ischemia. Int J Dev Neurosci 29: 645–654. doi: 10.1016/j.ijdevneu.2011.02.009
[32]  Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292: 18–36. doi: 10.1152/ajpregu.00327.2006
[33]  McKracken E, Graham DI, Nilsen M, Stewart J, Nicoll JA, et al. (2001) 4-Hydroxynonenal immunoreactivity is increased in human hippocampus after global ischemia. Brain Pathol 11: 414–421. doi: 10.1111/j.1750-3639.2001.tb00409.x
[34]  Huang C, Ye H, Xu J, Liu J, Qu A (2000) Effects of extremely low frequency weak magnetic fields on the intracellular free calcium concentration in PC-12 tumor cells. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 17: 63–65.
[35]  Manikonda PK, Rajendra P, Devendranath D, Gunasekaran B, Channakeshava, et al (2007) Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci Lett 413: 145–149. doi: 10.1016/j.neulet.2006.11.048
[36]  Nikoli? LM, Roki? MB, Todorovi? NV, Kartelija GS, Nedeljkovi? MS, et al. (2010) Effect of alternating the magnetic field on phosphate metabolism in the nervous system of Helix pomatia. Biol Res 43: 243–250. doi: 10.4067/s0716-97602010000200012
[37]  Espinosa JM, Liberti M, Lagroye I, Veyret B (2006) Exposure to AC and DC magnetic fields induces changes in 5-HT1B receptor binding parameters in rat brain membranes. Bioelectromagnetics 27: 414–422. doi: 10.1002/bem.20225
[38]  Jana? B, Tovilovi? G, Tomi? M, Proli? Z, Radenovi? L (2009) Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain. Gen Physiol Biophys 28: 41–46.
[39]  Lai H, Carino M (1999) 60 Hz magnetic fields and central cholinergic activity: effects of exposure intensity and duration. Bioelectromagnetics 20: 284–289. doi: 10.1002/(sici)1521-186x(1999)20:5<284::aid-bem4>3.3.co;2-q
[40]  Sieroń A, Labus ?, Nowak P, Cie?lar G, Brus H, et al. (2004) Alternating extremely low frequency magnetic field increases turnover of dopamine and serotonin in rat frontal cortex. Bioelectromagnetics 25: 426–430. doi: 10.1002/bem.20011
[41]  Zhang J, Wang X, Wang M (2005) Influence of time-varying magnetic field on the release of neurotransmitters in raphe nuclei of rats. Conf Proc IEEE Eng Med Biol Soc 6: 6214–6216. doi: 10.1109/iembs.2005.1615915
[42]  Shin EJ, Jeong JH, Kim HJ, Jang CG, Yamada K, et al. (2007) Exposure to extremely low frequency magnetic fields enhances locomotor activity via activation of dopamine D1-like receptors in mice. J Pharmacol Sci 105: 367–371. doi: 10.1254/jphs.sc0070348
[43]  Ravera S, Bianco B, Cugnoli C, Panfoli I, Calzia D, et al. (2010) Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes. Bioelectromagnetics 31: 270–276. doi: 10.1002/bem.20563
[44]  Sienkiewicz ZJ, Haylock RG, Saunders RD (1998) Deficits in spatial learning after exposure of mice to a 50 Hz magnetic field. Bioelectromagnetics 19: 79–84. doi: 10.1002/(sici)1521-186x(1998)19:2<79::aid-bem4>3.0.co;2-0
[45]  Choleris E, Thomas AW, Kavaliers M, Prato FS (2001) A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 25: 235–260. doi: 10.1016/s0149-7634(01)00011-2
[46]  Del Seppia C, Mezzasalma L, Choleris E, Luschi P, Ghione S (2003) Effects of magnetic field exposure on open field behaviour and nociceptive responses in mice. Behav Brain Res 144: 1–9. doi: 10.1016/s0166-4328(03)00042-1
[47]  Pe?i? V, Jana? B, Jelenkovi? A, Vorobyov V, Proli? Z (2004) Non-linearity in combined effects of ELF magnetic field and amphetamine on motor activity in rats. Behav Brain Res 150: 223–227. doi: 10.1016/j.bbr.2003.07.003
[48]  Shupak NM, Hensel JM, Cross-Mellor SK, Kavaliers M, Prato FS, et al. (2004) Analgesic and behavioral effects of a 100 microT specific pulsed extremely low frequency magnetic field on control and morphine treated CF-1 mice. Neurosci Lett 354: 30–33. doi: 10.1016/j.neulet.2003.09.063
[49]  Jana? B, Pe?i? V, Jelenkovi? A, Vorobyov V, Proli? Z (2005) Different effects of chronic exposure to ELF magnetic field on spontaneous and amphetamine-induced locomotor and stereotypic activities in rats. Brain Res Bull 67: 498–503. doi: 10.1016/j.brainresbull.2005.07.017
[50]  Whissell PD, Persinger MA (2007) Developmental effects of perinatal exposure to extremely weak 7 Hz magnetic fields and nitric oxide modulation in the Wistar albino rat. Int J Dev Neurosci 25: 433–439. doi: 10.1016/j.ijdevneu.2007.09.001
[51]  Balassa T, Szemerszky R, Bárdos G (2009) Effect of short-term 50 Hz electromagnetic field exposure on the behavior of rats. Acta Physiol Hung 96: 437–448. doi: 10.1556/aphysiol.96.2009.4.4
[52]  Jana? B, Selakovi? V, Rau? S, Radenovi? L, Zrni? M, et al. (2012) Temporal patterns of extremely low frequency magnetic field-induced motor behavior changes in Mongolian gerbils of different age. Int J Radiat Biol 88: 359–366. doi: 10.3109/09553002.2012.652725
[53]  Ciejka E, Kleniewska P, Skibska B, Goraca A (2011) Effects of extremely low frequency magnetic field on oxidative balance in brain of rats. J Physiol Pharmacol 62: 657–661.
[54]  Ikehara T, Yamaguchi H, Miyamoto H (1998) Effects of electromagnetic fields on membrane ion transport of cultured cells. J Med Invest 45: 47–56.
[55]  Yoshikawa T, Tanigawa M, Tanigawa T, Imai A, Hongo H, et al. (2000) Enhancement of nitric oxide generation by low frequency electromagnetic field. Pathophysiology 7: 131–135. doi: 10.1016/s0928-4680(00)00040-7
[56]  Lee BC, Johng HM, Lim JK, Jeong JH, Baik KY, et al. (2004) Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study. J Photochem Photobiol B 73: 43–48. doi: 10.1016/j.jphotobiol.2003.10.003
[57]  Frahm J, Lantow M, Lupke M, Weiss DG, Simkó M (2006) Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J Cell Biochem 99: 168–177. doi: 10.1002/jcb.20920
[58]  Lupke M, Frahm J, Lantow M, Maercker C, Remondini D, et al. (2006) Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochim Biophys Acta 1763: 402–412. doi: 10.1016/j.bbamcr.2006.03.003
[59]  Co?kun S, Balabanli B, Canseven A, Seyhan N (2009) Effects of continuous and intermittent magnetic fields on oxidative parameters in vivo. Neurochem Res 34: 238–243. doi: 10.1007/s11064-008-9760-3
[60]  Selakovi? V, Rau? Balind S, Radenovi? L, Proli? Z, Jana? B (2013) Age-dependent effects of ELF-MF on oxidative stress in the brain of Mongolian gerbils. Cell Biochem Biophys 66: 513–521. doi: 10.1007/s12013-012-9498-z
[61]  Thomas AW, Kavaliers M, Prato FS, Ossenkopp KP (1997) Pulsed magnetic field induced “analgesia” in the land snail, Cepaea nemoralis, and the effects of mu, delta, and kappa opioid receptor agonists/antagonists. Peptides 18: 703–709. doi: 10.1016/s0196-9781(97)00004-1
[62]  Kavaliers M, Choleris E, Prato FS, Ossenkopp K (1998) Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60-Hz magnetic fields in the land snail. Brain Res 809: 50–57. doi: 10.1016/s0006-8993(98)00844-0
[63]  Jeong JH, Kum C, Choi HJ, Park ES, Sohn UD (2006) Extremely low frequency magnetic field induces hyperalgesia in mice modulated by nitric oxide synthesis. Life Sci 78: 1407–1412. doi: 10.1016/j.lfs.2005.07.006
[64]  Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55: 310–318. doi: 10.1016/j.neuropharm.2008.01.005
[65]  Bediz CS, Baltaci AK, Mogulkoc R, Oztekin E (2006) Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J Exp Med 208: 133–140. doi: 10.1620/tjem.208.133
[66]  Nicolescu AC, Zavorin SI, Turro NJ, Reynolds JN, Thatcher GR (2002) Inhibition of lipid peroxidation in synaptosomes and liposomes by nitrates and nitrites. Chem Res Toxicol 15: 985–998. doi: 10.1021/tx025529j
[67]  Niziolek M, Korytowski W, Girotti AW (2003) Chain-breaking antioxidant and cytoprotective action of nitric oxide on photodynamically stressed tumor cells. Photochem Photobiol 78: 262–270. doi: 10.1562/0031-8655(2003)078<0262:caacao>2.0.co;2
[68]  Mattson MP, Cheng B (1993) Growth factors protect neurons against excitotoxic/ischemic damage by stabilizing calcium homeostasis. Stroke 24: I136–140 discussion I144–145.
[69]  Williams LR (1995) Oxidative stress, age-related neurodegeneration, and the potential for neurotrophic treatment. Cerebrovasc Brain Metab Rev 7: 55–73.
[70]  Batcioglu K, Ozturk C, Atalay S, Dogan D, Bayri N, et al. (2002) Investigation of time dependent magnetic field effects on superoxide dismutase and catalase activity: an in vitro study. J Biol Phys Chem 2: 108–112.
[71]  Zwirska-Korczala K, Adamczyk-Sowa M, Polaniak R, Sowa P, Birkner E, et al. (2004) Influence of extremely-low-frequency magnetic field on antioxidative melatonin properties in AT478 murine squamous cell carcinoma culture. Biol Trace Elem Res 102: 227–243. doi: 10.1385/bter:102:1-3:227

Full-Text

comments powered by Disqus