All Title Author
Keywords Abstract

PLOS ONE  2014 

Increasing Prion Propensity by Hydrophobic Insertion

DOI: 10.1371/journal.pone.0089286

Full-Text   Cite this paper   Add to My Lib


Prion formation involves the conversion of proteins from a soluble form into an infectious amyloid form. Most yeast prion proteins contain glutamine/asparagine-rich regions that are responsible for prion aggregation. Prion formation by these domains is driven primarily by amino acid composition, not primary sequence, yet there is a surprising disconnect between the amino acids thought to have the highest aggregation propensity and those that are actually found in yeast prion domains. Specifically, a recent mutagenic screen suggested that both aromatic and non-aromatic hydrophobic residues strongly promote prion formation. However, while aromatic residues are common in yeast prion domains, non-aromatic hydrophobic residues are strongly under-represented. Here, we directly test the effects of hydrophobic and aromatic residues on prion formation. Remarkably, we found that insertion of as few as two hydrophobic residues resulted in a multiple orders-of-magnitude increase in prion formation, and significant acceleration of in vitro amyloid formation. Thus, insertion or deletion of hydrophobic residues provides a simple tool to control the prion activity of a protein. These data, combined with bioinformatics analysis, suggest a limit on the number of strongly prion-promoting residues tolerated in glutamine/asparagine-rich domains. This limit may explain the under-representation of non-aromatic hydrophobic residues in yeast prion domains. Prion activity requires not only that a protein be able to form prion fibers, but also that these fibers be cleaved to generate new independently-segregating aggregates to offset dilution by cell division. Recent studies suggest that aromatic residues, but not non-aromatic hydrophobic residues, support the fiber cleavage step. Therefore, we propose that while both aromatic and non-aromatic hydrophobic residues promote prion formation, aromatic residues are favored in yeast prion domains because they serve a dual function, promoting both prion formation and chaperone-dependent prion propagation.


[1]  Wadsworth JD, Collinge J (2007) Update on human prion disease. Biochim Biophys Acta 1772: 598–609. doi: 10.1016/j.bbadis.2007.02.010
[2]  Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94: 9773–9778. doi: 10.1073/pnas.94.18.9773
[3]  Maclea KS, Ross ED (2011) Strategies for identifying new prions in yeast. Prion 5: 263–268. doi: 10.4161/pri.5.4.17918
[4]  Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201: 361–372. doi: 10.1083/jcb.201302044
[5]  Da Cruz S, Cleveland DW (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 21: 904–919. doi: 10.1016/j.conb.2011.05.029
[6]  Geser F, Martinez-Lage M, Kwong LK, Lee VM, Trojanowski JQ (2009) Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 256: 1205–1214. doi: 10.1007/s00415-009-5069-7
[7]  Weihl CC, Temiz P, Miller SE, Watts G, Smith C, et al. (2008) TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry 79: 1186–1189. doi: 10.1136/jnnp.2007.131334
[8]  Couthouis J, Hart MP, Erion R, King OD, Diaz Z, et al.. (2012) Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet: Epub ahead of print.
[9]  Couthouis J, Hart MP, Shorter J, Dejesus-Hernandez M, Erion R, et al. (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 108: 20881–20890. doi: 10.1073/pnas.1109434108
[10]  Neumann M, Bentmann E, Dormann D, Jawaid A, DeJesus-Hernandez M, et al. (2011) FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134: 2595–2609. doi: 10.1093/brain/awr201
[11]  Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, et al. (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495: 467–473. doi: 10.1038/nature11922
[12]  Klar J, Sobol M, Melberg A, Mabert K, Ameur A, et al. (2013) Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum Mutat 34: 572–577. doi: 10.1002/humu.22282
[13]  Bradley ME, Liebman SW (2004) The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions. Mol Microbiol 51: 1649–1659. doi: 10.1111/j.1365-2958.2003.03955.x
[14]  Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137: 671–676.
[15]  Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, et al. (1993) Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7: 683–692. doi: 10.1111/j.1365-2958.1993.tb01159.x
[16]  Harrison PM, Gerstein M (2003) A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Genome Biol 4: R40.
[17]  Liu JJ, Sondheimer N, Lindquist SL (2002) Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc Natl Acad Sci USA 99 Suppl 416446–16453. doi: 10.1073/pnas.252652099
[18]  Ross ED, Baxa U, Wickner RB (2004) Scrambled Prion Domains Form Prions and Amyloid. Mol Cell Biol 24: 7206–7213. doi: 10.1128/mcb.24.16.7206-7213.2004
[19]  Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A Systematic Survey Identifies Prions and Illuminates Sequence Features of Prionogenic Proteins. Cell 137: 146–158. doi: 10.1016/j.cell.2009.02.044
[20]  Michelitsch MD, Weissman JS (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci USA 97: 11910–11915. doi: 10.1073/pnas.97.22.11910
[21]  Sondheimer N, Lindquist S (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5: 163–172. doi: 10.1016/s1097-2765(00)80412-8
[22]  Halfmann R, Wright J, Alberti S, Lindquist S, Rexach M (2012) Prion formation by a yeast GLFG nucleoporin. Prion 6.
[23]  Ross ED, Toombs JA (2010) The effects of amino acid composition on yeast prion formation and prion domain interactions. Prion 4: 60–65. doi: 10.4161/pri.4.2.12190
[24]  Toombs JA, McCarty BR, Ross ED (2010) Compositional determinants of prion formation in yeast. Mol Cell Biol 30: 319–332. doi: 10.1128/mcb.01140-09
[25]  Ross ED, Maclea KS, Anderson C, Ben-Hur A (2013) A bioinformatics method for identifying Q/N-rich prion-like domains in proteins. Methods Mol Biol 1017: 219–228. doi: 10.1007/978-1-62703-438-8_16
[26]  Toombs JA, Petri M, Paul KR, Kan GY, Ben-Hur A, et al. (2012) De novo design of synthetic prion domains. Proc Natl Acad Sci U S A 109: 6519–6524. doi: 10.1073/pnas.1119366109
[27]  Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424: 805–808. doi: 10.1038/nature01891
[28]  Maurer-Stroh S, Debulpaep M, Kuemmerer N, Lopez de la Paz M, Martins IC, et al. (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nature Methods 7: 237–242. doi: 10.1038/nmeth.1432
[29]  Tartaglia GG, Pawar AP, Campioni S, Dobson CM, Chiti F, et al. (2008) Prediction of aggregation-prone regions in structured proteins. J Mol Biol 380: 425–436. doi: 10.1016/j.jmb.2008.05.013
[30]  Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA 107: 3487–3492. doi: 10.1073/pnas.0915166107
[31]  Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22: 1302–1306. doi: 10.1038/nbt1012
[32]  Salnikova AB, Kryndushkin DS, Smirnov VN, Kushnirov VV, Ter-Avanesyan MD (2005) Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids. J Biol Chem 280: 8808–8812. doi: 10.1074/jbc.m410150200
[33]  Alexandrov AI, Polyanskaya AB, Serpionov GV, Ter-Avanesyan MD, Kushnirov VV (2012) The effects of amino acid composition of glutamine-rich domains on amyloid formation and fragmentation. PLoS ONE 7: e46458. doi: 10.1371/journal.pone.0046458
[34]  Toombs JA, Liss NM, Cobble KR, Ben-Musa Z, Ross ED (2011) [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain. PLoS One 6: e21953. doi: 10.1371/journal.pone.0021953
[35]  Sherman F (1991) Getting started with yeast. Methods Enzymol 194: 3–21. doi: 10.1016/0076-6879(91)94004-v
[36]  Song Y, Wu YX, Jung G, Tutar Y, Eisenberg E, et al. (2005) Role for Hsp70 chaperone in Saccharomyces cerevisiae prion seed replication. Eukaryot Cell 4: 289–297. doi: 10.1128/ec.4.2.289-297.2005
[37]  Ross ED, Edskes HK, Terry MJ, Wickner RB (2005) Primary sequence independence for prion formation. Proc Natl Acad Sci USA 102: 12825–12830. doi: 10.1073/pnas.0506136102
[38]  Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534. doi: 10.1016/0378-1119(88)90185-0
[39]  Cormack BP, Bertram G, Egerton M, Gow NA, Falkow S, et al. (1997) Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans. Microbiology 143: 303–311. doi: 10.1099/00221287-143-2-303
[40]  Ross CD, McCarty BM, Hamilton M, Ben-Hur A, Ross ED (2009) A promiscuous prion: Efficient induction of [URE3] prion formation by heterologous prion domains. Genetics 183: 929–940. doi: 10.1534/genetics.109.109322
[41]  Bagriantsev SN, Kushnirov VV, Liebman SW (2006) Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 412: 33–48. doi: 10.1016/s0076-6879(06)12003-0
[42]  Collins SR, Douglass A, Vale RD, Weissman JS (2004) Mechanism of Prion Propagation: Amyloid Growth Occurs by Monomer Addition. PLoS Biology 2: e321. doi: 10.1371/journal.pbio.0020321
[43]  Alexandrov IM, Vishnevskaya AB, Ter-Avanesyan MD, Kushnirov VV (2008) Appearance and propagation of polyglutamine-based amyloids in yeast: tyrosine residues enable polymer fragmentation. J Biol Chem 283: 15185–15192. doi: 10.1074/jbc.m802071200
[44]  Osherovich LZ, Cox BS, Tuite MF, Weissman JS (2004) Dissection and design of yeast prions. PLoS Biol 2: E86. doi: 10.1371/journal.pbio.0020086
[45]  DePace AH, Santoso A, Hillner P, Weissman JS (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93: 1241–1252. doi: 10.1016/s0092-8674(00)81467-1
[46]  Parham SN, Resende CG, Tuite MF (2001) Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J 20: 2111–2119. doi: 10.1093/emboj/20.9.2111
[47]  Shkundina IS, Kushnirov VV, Tuite MF, Ter-Avanesyan MD (2006) The role of the N-terminal oligopeptide repeats of the yeast sup35 prion protein in propagation and transmission of prion variants. Genetics 172: 827–835. doi: 10.1534/genetics.105.048660
[48]  Cox BS (1965) PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 26: 211–232. doi: 10.1038/hdy.1965.65
[49]  Lancaster AK, Bardill JP, True HL, Masel J (2010) The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system. Genetics 184: 393–400. doi: 10.1534/genetics.109.110213
[50]  Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264: 566–569. doi: 10.1126/science.7909170
[51]  Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW (1997) Genetic and Environmental Factors Affecting the de novo Appearance of the [PSI(+)] Prion in Saccharomyces cerevisiae. Genetics 147: 507–519.
[52]  Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF (2001) The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol 40: 1357–1369. doi: 10.1046/j.1365-2958.2001.02478.x
[53]  Jung G, Masison DC (2001) Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr Microbiol 43: 7–10. doi: 10.1007/s002840010251
[54]  Ness F, Ferreira P, Cox BS, Tuite MF (2002) Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol Cell Biol 22: 5593–5605. doi: 10.1128/mcb.22.15.5593-5605.2002
[55]  Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (1996) Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 15: 3127–3134.
[56]  Wegrzyn RD, Bapat K, Newnam GP, Zink AD, Chernoff YO (2001) Mechanism of prion loss after Hsp104 inactivation in yeast. Mol Cell Biol 21: 4656–4669. doi: 10.1128/mcb.21.14.4656-4669.2001
[57]  LeVine H 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309: 274–284. doi: 10.1016/s0076-6879(99)09020-5
[58]  Chen B, Bruce KL, Newnam GP, Gyoneva S, Romanyuk AV, et al. (2010) Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission. Mol Microbiol 76: 1483–1499. doi: 10.1111/j.1365-2958.2010.07177.x
[59]  Santoso A, Chien P, Osherovich LZ, Weissman JS (2000) Molecular basis of a yeast prion species barrier. Cell 100: 277–288. doi: 10.1016/s0092-8674(00)81565-2
[60]  Tessier PM, Lindquist S (2007) Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447: 556–561. Epub 2007 May 2009.
[61]  Pastor MT, Esteras-Chopo A, Serrano L (2007) Hacking the code of amyloid formation: the amyloid stretch hypothesis. Prion 1: 9–14. Epub 2007 Jan 2005.
[62]  Lopez de la Paz M, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A 101: 87–92. Epub 2003 Dec 2022.
[63]  Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, et al. (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103: 4074–4078. doi: 10.1073/pnas.0511295103
[64]  Teng PK, Eisenberg D (2009) Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel 22: 531–536. doi: 10.1093/protein/gzp037
[65]  McGlinchey RP, Kryndushkin D, Wickner RB (2011) Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci U S A 108: 5337–5341. doi: 10.1073/pnas.1102762108
[66]  Ohhashi Y, Ito K, Toyama BH, Weissman JS, Tanaka M (2010) Differences in prion strain conformations result from non-native interactions in a nucleus. Nature 6: 225–230. doi: 10.1038/nchembio.306
[67]  Street AG, Mayo SL (1999) Intrinsic beta-sheet propensities result from van der Waals interactions between side chains and the local backbone. Proc Natl Acad Sci U S A 96: 9074–9076. doi: 10.1073/pnas.96.16.9074
[68]  Espinosa Angarica V, Ventura S, Sancho J (2013) Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics 14: 316. doi: 10.1186/1471-2164-14-316
[69]  Crow ET, Du Z, Li L (2011) A small, glutamine-free domain propagates the [SWI(+)] prion in budding yeast. Mol Cell Biol 31: 3436–3444. doi: 10.1128/mcb.05338-11


comments powered by Disqus