[1] | Hoffmann A, Sgro C (2011) Climate change and evolutionary adaptation. Nature 470: 497–485. doi: 10.1038/nature09670
|
[2] | Bell G, Gonzalez A (2011) Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332: 1327–1330. doi: 10.1126/science.1203105
|
[3] | Berg MP, Kiers ET, Driessen G, Vand Der Heijden M, Kooi BW, et al. (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Chang Biol 16: 587–598. doi: 10.1111/j.1365-2486.2009.02014.x
|
[4] | Pigliucci M, Murranand CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209: 2362–2367. doi: 10.1242/jeb.02070
|
[5] | Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst 17: 667–693. doi: 10.1146/annurev.es.17.110186.003315
|
[6] | Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13: 115–155. doi: 10.1016/s0065-2660(08)60048-6
|
[7] | Schlichting CD (2004) The role of phenotypic plasticity in diversification. In: DeWitt TJ, Schneider SM, editors. Phenotypic plasticity: Functional and Conceptual Approaches. Oxford: Oxford University Press. 191–200.
|
[8] | Murren CJ, Denning W, Pigliucci M (2005) Relationships between vegetative and life history traits and fitness in a novel field environment: impacts of herbivores. Evol Ecol 19: 583–601. doi: 10.1007/s10682-005-2005-x
|
[9] | van Kleunen M, Fisher M (2005) Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166: 49–60. doi: 10.1111/j.1469-8137.2004.01296.x
|
[10] | Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14: 419–431. doi: 10.1111/j.1461-0248.2011.01596.x
|
[11] | Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sunderland, MA: Sinauer. 387 p.
|
[12] | West-Eberhard MJ (2003) Developmental plasticity and evolution. New york: Oxford University Press. 794 p.
|
[13] | Via S, Gomulkiewicz R, de Jong G, Schneider SM, Schlichting CD, et al. (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol 10: 212–217. doi: 10.1016/s0169-5347(00)89061-8
|
[14] | Moran NA (1992) The evolutionary maintenance of alternative phenotypes. Am Nat 139: 971–989. doi: 10.1086/285369
|
[15] | Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Baltimore, Maryland: John Hopkins University Press. 344 p.
|
[16] | Auld JR, Agrawal AA, Relyea RA (2010) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc R Soc Biol Sci Ser B 277: 503–511. doi: 10.1098/rspb.2009.1355
|
[17] | Moczek AP (2010) Phenotypic plasticity and diversity in insects. Philos. Trans R Soc B Biol Sci 365: 593–603. doi: 10.1098/rstb.2009.0263
|
[18] | Van Buskirk J, Steiner UK (2009) The fitness costs of developmental canalization and plasticity. J Evol Biol 22: 852–860. doi: 10.1111/j.1420-9101.2009.01685.x
|
[19] | DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13: 77–81. doi: 10.1016/s0169-5347(97)01274-3
|
[20] | Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20: 481–486. doi: 10.1016/j.tree.2005.06.001
|
[21] | Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13: 403–407. doi: 10.1016/s0169-5347(98)01472-4
|
[22] | Bonduriansky R, Day T (2009) Non genetic inheritance and its evolutionary implications. Annu Rev Ecol Evol Syst 40: 103–125. doi: 10.1146/annurev.ecolsys.39.110707.173441
|
[23] | Danchin E, Wagner RH (2010) Inclusive Heritability: combining genetic and nongenetic information to study animal behavior and culture. Oikos 119: 210–218. doi: 10.1111/j.1600-0706.2009.17640.x
|
[24] | Ducatez S, Baguette M, Stevens VM, Legrand D, Fréville H (2012) Complex interactions between paternal and maternal effects: parental experience and age at reproduction affect fecundity and offspring performance in a butterfly. Evolution 66: 3558–3569. doi: 10.1111/j.1558-5646.2012.01704.x
|
[25] | Feltwell J (1982) Large white butterfly, the biology, biochemistry and physiology of Pieris brassicae (Linnaeus). The Hague, the Netherlands: Dr. W. Junk Publisher. 535 p.
|
[26] | Kingsolver JG, Wiernasz DC (1991) Seasonal polyphenism in wing-melanin patterns and thermoregulatory adaptation in Pieris butterflies. Am Nat 137: 816–830. doi: 10.1086/285195
|
[27] | Ellers J, Boggs CL (2002) The evolution of wing color in Colias butterflies: heritability, sex linkage, and population divergence. Evolution 56: 836–840. doi: 10.1554/0014-3820(2002)056[0836:teowci]2.0.co;2
|
[28] | Stoehr AM (2006) Costly melanin ornaments: the importance of taxon? Funct Ecol 20: 276–281. doi: 10.1111/j.1365-2435.2006.01090.x
|
[29] | Stoehr AM (2010) Responses of disparate phenotypically-plastic, melanin-based traits to common cues: limits to the benefits of adaptive plasticity. Evol Ecol 24: 287–298. doi: 10.1007/s10682-009-9306-4
|
[30] | Talloen W, Van Dyck H, Lens L (2004) The cost of melanization: butterfly wing coloration under environmental stress. Evolution 58: 360–366. doi: 10.1554/03-250
|
[31] | Lee KP, Simpson SJ, Wilson K (2008) Dietary protein-quality influences melanization and immune function in an insect. Funct Ecol 22.
|
[32] | Ma W, Chen L, Wang M, Li X (2008) Trade-offs between melanisation and life-history traits in Helicoperva armigera. Ecol Entomol 33: 37–44. doi: 10.1111/j.1365-2311.2007.00932.x
|
[33] | Nappi AJ, Christensen BM (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35: 443–459. doi: 10.1016/j.ibmb.2005.01.014
|
[34] | Sugumaran M (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigm Cell Res 15: 2–9. doi: 10.1034/j.1600-0749.2002.00056.x
|
[35] | Kingsolver JG (1985) Thermoregulatory significance of wing melanization in Pieris butterflies (Lepidoptera: Pieridae): physics, posture, and pattern. Oecologia 66: 546–553. doi: 10.1007/bf00379348
|
[36] | Stoehr AM, Goux H (2008) Seasonal phenotypic plasticity of wing melanisation in the cabbage white butterfly, Pieris rapae L. (Lepidoptera: Pieridae). Ecol Entomol 33: 137–143. doi: 10.1111/j.1365-2311.2007.00931.x
|
[37] | Kingsolver JG (1985) Thermal ecology of Pieris butterflies: A new mechanism of behavioral thermoregulation. Oecologia 66: 540–545. doi: 10.1007/bf00379347
|
[38] | Kingsolver JG (1987) Evolution and coadaptation of thermoregulatory behavior and wing pigmentation pattern in pierid butterflies. Evolution 41: 472–490. doi: 10.2307/2409250
|
[39] | Obara Y, Majerus MEN (2000) Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae. Zoolog Sci 17: 725–730. doi: 10.2108/zsj.17.725
|
[40] | Obara Y, Koshitaka H, Kentaro A (2008) Better mate in the shade: enhancement of male mating behaviour in the cabbage butterfly, Pieris rapae crucivora, in a UV-rich environment. J Exp Biol 211: 3698–3702. doi: 10.1242/jeb.021980
|
[41] | Maercks H (1934) Untersuchungen zur ?kilogie des kohlweisslings (Pieris brassicae L.), die temperaturreaktionen und das feuchtigkeitoptimum. Z Morph ?kol Tiere 28: 692–721. doi: 10.1007/bf00412834
|
[42] | Stevens M, Parraga CA, Cuthill IC, Partridge JC, Troscianko TS (2007) Using digital photography to study animal coloration. Biol J Linn Soc 90: 211–237. doi: 10.1111/j.1095-8312.2007.00725.x
|
[43] | Hadfield JD (2010) MCMC methods for multiple-response generalized linear mixed models: MCMCglmm R package. J Stat Softw 33: 1–22.
|
[44] | Wilson AJ, Réale D, Cements MN, Morrissey MM, Postma E, et al. (2010) An ecologist’s guide to the animal model. J Anim Ecol 79: 13–26. doi: 10.1111/j.1365-2656.2009.01639.x
|
[45] | Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B 64: 583–639. doi: 10.1111/1467-9868.00353
|
[46] | Fowler K, Partridge L (1989) A cost of mating in female fruitflies. Nature 338: 760–761. doi: 10.1038/338760a0
|
[47] | Partridge L, Harvey PH (1988) The Ecological context of life history evolution Science. 241: 1449–1455. doi: 10.1126/science.241.4872.1449
|
[48] | Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach. New York: 2nd ed. Springer-Verlag. 488 p.
|
[49] | Burnham KP, Anderson DR (2004) Multimodel inference: Understanding AIC and BIC in model selection. Sociol Methods Res 33: 261–304. doi: 10.1177/0049124104268644
|
[50] | Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24: 699–711. doi: 10.1111/j.1420-9101.2010.02210.x
|
[51] | Richards SA (2008) Dealing with overdispersed count data in applied ecology. J Appl Ecol 45: 218–227. doi: 10.1111/j.1365-2664.2007.01377.x
|
[52] | Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in Ecology with R. New York: Springer. 574 p.
|
[53] | Roff DA (2002) Life History Evolution. Sunderland, MA: Sinauer Associates. 465 p.
|
[54] | Crill WD, Huey RB, Gilchrist GW (1996) Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster. Evolution 50: 1205–1218. doi: 10.2307/2410661
|
[55] | Gilchrist GW, Huey RB (2001) Parental and developmental temperature effects on the thermal dependence of fitness in Drosophila melanogaster. Evolution 55: 209–214. doi: 10.1554/0014-3820(2001)055[0209:padteo]2.0.co;2
|
[56] | Kingsolver JG (1983) Thermoregulation and flight in Colias butterflies: elevational patterns and mechanistic limitations. Ecology 64: 534–545. doi: 10.2307/1939973
|
[57] | Van Dyck H, Matthysen E (1998) Thermoregulatory differences between phenotypes in the speckled wood butterfly: hot perchers and cold patrollers? Oecologia 114: 326–334. doi: 10.1007/s004420050454
|
[58] | Kingsolver JG, Massie KR, Ragland GJ, Smith MH (2007) Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature–size rule. J Evol Biol 20: 892–900. doi: 10.1111/j.1420-9101.2007.01318.x
|
[59] | Moczek AP (2011) Evolutionary biology: the origins of novelty. Nature 473: 34–35. doi: 10.1038/473034a
|
[60] | Western D (2001) Human-modified ecosystems and future evolution. Proc Natl Acad Sci U S A 98: 5458–5465. doi: 10.1073/pnas.101093598
|