All Title Author
Keywords Abstract

PLOS ONE  2014 

Fitness Costs of Thermal Reaction Norms for Wing Melanisation in the Large White Butterfly (Pieris brassicae)

DOI: 10.1371/journal.pone.0090026

Full-Text   Cite this paper   Add to My Lib

Abstract:

The large white butterfly, Pieris brassicae, shows a seasonal polyphenism of wing melanisation, spring individuals being darker than summer individuals. This phenotypic plasticity is supposed to be an adaptive response for thermoregulation in natural populations. However, the variation in individuals’ response, the cause of this variation (genetic, non genetic but inheritable or environmental) and its relationship with fitness remain poorly known. We tested the relationships between thermal reaction norm of wing melanisation and adult lifespan as well as female fecundity. Butterflies were reared in cold (18°C), moderate (22°C), and hot (26°C) temperatures over three generations to investigate variation in adult pigmentation and the effects of maternal thermal environment on offspring reaction norms. We found a low heritability in wing melanisation (h2 = 0.18). Rearing families had contrasted thermal reaction norms. Adult lifespan of males and females from highly plastic families was shorter in individuals exposed to hot developmental temperature. Also, females from plastic families exhibited lower fecundity. We did not find any effect of maternal or grand-maternal developmental temperature on fitness. This study provides new evidence on the influence of phenotypic plasticity on life history-traits’ evolution, a crucial issue in the context of global change.

References

[1]  Hoffmann A, Sgro C (2011) Climate change and evolutionary adaptation. Nature 470: 497–485. doi: 10.1038/nature09670
[2]  Bell G, Gonzalez A (2011) Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332: 1327–1330. doi: 10.1126/science.1203105
[3]  Berg MP, Kiers ET, Driessen G, Vand Der Heijden M, Kooi BW, et al. (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Chang Biol 16: 587–598. doi: 10.1111/j.1365-2486.2009.02014.x
[4]  Pigliucci M, Murranand CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209: 2362–2367. doi: 10.1242/jeb.02070
[5]  Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst 17: 667–693. doi: 10.1146/annurev.es.17.110186.003315
[6]  Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13: 115–155. doi: 10.1016/s0065-2660(08)60048-6
[7]  Schlichting CD (2004) The role of phenotypic plasticity in diversification. In: DeWitt TJ, Schneider SM, editors. Phenotypic plasticity: Functional and Conceptual Approaches. Oxford: Oxford University Press. 191–200.
[8]  Murren CJ, Denning W, Pigliucci M (2005) Relationships between vegetative and life history traits and fitness in a novel field environment: impacts of herbivores. Evol Ecol 19: 583–601. doi: 10.1007/s10682-005-2005-x
[9]  van Kleunen M, Fisher M (2005) Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol 166: 49–60. doi: 10.1111/j.1469-8137.2004.01296.x
[10]  Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14: 419–431. doi: 10.1111/j.1461-0248.2011.01596.x
[11]  Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sunderland, MA: Sinauer. 387 p.
[12]  West-Eberhard MJ (2003) Developmental plasticity and evolution. New york: Oxford University Press. 794 p.
[13]  Via S, Gomulkiewicz R, de Jong G, Schneider SM, Schlichting CD, et al. (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol 10: 212–217. doi: 10.1016/s0169-5347(00)89061-8
[14]  Moran NA (1992) The evolutionary maintenance of alternative phenotypes. Am Nat 139: 971–989. doi: 10.1086/285369
[15]  Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Baltimore, Maryland: John Hopkins University Press. 344 p.
[16]  Auld JR, Agrawal AA, Relyea RA (2010) Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc R Soc Biol Sci Ser B 277: 503–511. doi: 10.1098/rspb.2009.1355
[17]  Moczek AP (2010) Phenotypic plasticity and diversity in insects. Philos. Trans R Soc B Biol Sci 365: 593–603. doi: 10.1098/rstb.2009.0263
[18]  Van Buskirk J, Steiner UK (2009) The fitness costs of developmental canalization and plasticity. J Evol Biol 22: 852–860. doi: 10.1111/j.1420-9101.2009.01685.x
[19]  DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13: 77–81. doi: 10.1016/s0169-5347(97)01274-3
[20]  Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20: 481–486. doi: 10.1016/j.tree.2005.06.001
[21]  Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13: 403–407. doi: 10.1016/s0169-5347(98)01472-4
[22]  Bonduriansky R, Day T (2009) Non genetic inheritance and its evolutionary implications. Annu Rev Ecol Evol Syst 40: 103–125. doi: 10.1146/annurev.ecolsys.39.110707.173441
[23]  Danchin E, Wagner RH (2010) Inclusive Heritability: combining genetic and nongenetic information to study animal behavior and culture. Oikos 119: 210–218. doi: 10.1111/j.1600-0706.2009.17640.x
[24]  Ducatez S, Baguette M, Stevens VM, Legrand D, Fréville H (2012) Complex interactions between paternal and maternal effects: parental experience and age at reproduction affect fecundity and offspring performance in a butterfly. Evolution 66: 3558–3569. doi: 10.1111/j.1558-5646.2012.01704.x
[25]  Feltwell J (1982) Large white butterfly, the biology, biochemistry and physiology of Pieris brassicae (Linnaeus). The Hague, the Netherlands: Dr. W. Junk Publisher. 535 p.
[26]  Kingsolver JG, Wiernasz DC (1991) Seasonal polyphenism in wing-melanin patterns and thermoregulatory adaptation in Pieris butterflies. Am Nat 137: 816–830. doi: 10.1086/285195
[27]  Ellers J, Boggs CL (2002) The evolution of wing color in Colias butterflies: heritability, sex linkage, and population divergence. Evolution 56: 836–840. doi: 10.1554/0014-3820(2002)056[0836:teowci]2.0.co;2
[28]  Stoehr AM (2006) Costly melanin ornaments: the importance of taxon? Funct Ecol 20: 276–281. doi: 10.1111/j.1365-2435.2006.01090.x
[29]  Stoehr AM (2010) Responses of disparate phenotypically-plastic, melanin-based traits to common cues: limits to the benefits of adaptive plasticity. Evol Ecol 24: 287–298. doi: 10.1007/s10682-009-9306-4
[30]  Talloen W, Van Dyck H, Lens L (2004) The cost of melanization: butterfly wing coloration under environmental stress. Evolution 58: 360–366. doi: 10.1554/03-250
[31]  Lee KP, Simpson SJ, Wilson K (2008) Dietary protein-quality influences melanization and immune function in an insect. Funct Ecol 22.
[32]  Ma W, Chen L, Wang M, Li X (2008) Trade-offs between melanisation and life-history traits in Helicoperva armigera. Ecol Entomol 33: 37–44. doi: 10.1111/j.1365-2311.2007.00932.x
[33]  Nappi AJ, Christensen BM (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35: 443–459. doi: 10.1016/j.ibmb.2005.01.014
[34]  Sugumaran M (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigm Cell Res 15: 2–9. doi: 10.1034/j.1600-0749.2002.00056.x
[35]  Kingsolver JG (1985) Thermoregulatory significance of wing melanization in Pieris butterflies (Lepidoptera: Pieridae): physics, posture, and pattern. Oecologia 66: 546–553. doi: 10.1007/bf00379348
[36]  Stoehr AM, Goux H (2008) Seasonal phenotypic plasticity of wing melanisation in the cabbage white butterfly, Pieris rapae L. (Lepidoptera: Pieridae). Ecol Entomol 33: 137–143. doi: 10.1111/j.1365-2311.2007.00931.x
[37]  Kingsolver JG (1985) Thermal ecology of Pieris butterflies: A new mechanism of behavioral thermoregulation. Oecologia 66: 540–545. doi: 10.1007/bf00379347
[38]  Kingsolver JG (1987) Evolution and coadaptation of thermoregulatory behavior and wing pigmentation pattern in pierid butterflies. Evolution 41: 472–490. doi: 10.2307/2409250
[39]  Obara Y, Majerus MEN (2000) Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae. Zoolog Sci 17: 725–730. doi: 10.2108/zsj.17.725
[40]  Obara Y, Koshitaka H, Kentaro A (2008) Better mate in the shade: enhancement of male mating behaviour in the cabbage butterfly, Pieris rapae crucivora, in a UV-rich environment. J Exp Biol 211: 3698–3702. doi: 10.1242/jeb.021980
[41]  Maercks H (1934) Untersuchungen zur ?kilogie des kohlweisslings (Pieris brassicae L.), die temperaturreaktionen und das feuchtigkeitoptimum. Z Morph ?kol Tiere 28: 692–721. doi: 10.1007/bf00412834
[42]  Stevens M, Parraga CA, Cuthill IC, Partridge JC, Troscianko TS (2007) Using digital photography to study animal coloration. Biol J Linn Soc 90: 211–237. doi: 10.1111/j.1095-8312.2007.00725.x
[43]  Hadfield JD (2010) MCMC methods for multiple-response generalized linear mixed models: MCMCglmm R package. J Stat Softw 33: 1–22.
[44]  Wilson AJ, Réale D, Cements MN, Morrissey MM, Postma E, et al. (2010) An ecologist’s guide to the animal model. J Anim Ecol 79: 13–26. doi: 10.1111/j.1365-2656.2009.01639.x
[45]  Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B 64: 583–639. doi: 10.1111/1467-9868.00353
[46]  Fowler K, Partridge L (1989) A cost of mating in female fruitflies. Nature 338: 760–761. doi: 10.1038/338760a0
[47]  Partridge L, Harvey PH (1988) The Ecological context of life history evolution Science. 241: 1449–1455. doi: 10.1126/science.241.4872.1449
[48]  Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach. New York: 2nd ed. Springer-Verlag. 488 p.
[49]  Burnham KP, Anderson DR (2004) Multimodel inference: Understanding AIC and BIC in model selection. Sociol Methods Res 33: 261–304. doi: 10.1177/0049124104268644
[50]  Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24: 699–711. doi: 10.1111/j.1420-9101.2010.02210.x
[51]  Richards SA (2008) Dealing with overdispersed count data in applied ecology. J Appl Ecol 45: 218–227. doi: 10.1111/j.1365-2664.2007.01377.x
[52]  Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in Ecology with R. New York: Springer. 574 p.
[53]  Roff DA (2002) Life History Evolution. Sunderland, MA: Sinauer Associates. 465 p.
[54]  Crill WD, Huey RB, Gilchrist GW (1996) Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster. Evolution 50: 1205–1218. doi: 10.2307/2410661
[55]  Gilchrist GW, Huey RB (2001) Parental and developmental temperature effects on the thermal dependence of fitness in Drosophila melanogaster. Evolution 55: 209–214. doi: 10.1554/0014-3820(2001)055[0209:padteo]2.0.co;2
[56]  Kingsolver JG (1983) Thermoregulation and flight in Colias butterflies: elevational patterns and mechanistic limitations. Ecology 64: 534–545. doi: 10.2307/1939973
[57]  Van Dyck H, Matthysen E (1998) Thermoregulatory differences between phenotypes in the speckled wood butterfly: hot perchers and cold patrollers? Oecologia 114: 326–334. doi: 10.1007/s004420050454
[58]  Kingsolver JG, Massie KR, Ragland GJ, Smith MH (2007) Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature–size rule. J Evol Biol 20: 892–900. doi: 10.1111/j.1420-9101.2007.01318.x
[59]  Moczek AP (2011) Evolutionary biology: the origins of novelty. Nature 473: 34–35. doi: 10.1038/473034a
[60]  Western D (2001) Human-modified ecosystems and future evolution. Proc Natl Acad Sci U S A 98: 5458–5465. doi: 10.1073/pnas.101093598

Full-Text

comments powered by Disqus