All Title Author
Keywords Abstract

PLOS ONE  2014 

Independent Expansion of Zincin Metalloproteinases in Onygenales Fungi May Be Associated with Their Pathogenicity

DOI: 10.1371/journal.pone.0090225

Full-Text   Cite this paper   Add to My Lib

Abstract:

To get a comprehensive view of fungal M35 family (deuterolysin) and M36 family (fungalysin) genes, we conducted genome-wide investigations and phylogenetic analyses of genes in these two families from 50 sequenced Ascomycota fungi with different life styles. Large variations in the number of M35 family and M36 family genes were found among different fungal genomes, indicating that these two gene families have been highly dynamic through fungal evolution. Moreover, we found obvious expansions of Meps in two families of Onygenales: Onygenaceae and Arthodermataceae, whereas species in family Ajellomycetace did not show expansion of these genes. The strikingly different gene duplication and loss patterns in Onygenales may be associated with the different pathogenicity of these species. Interestingly, likelihood ratio tests (LRT) of both M35 family and M36 family genes suggested that several branches leading to the duplicated genes in dermatophytic and Coccidioides fungi had signatures of positive selection, indicating that the duplicated Mep genes have likely diverged functionally to play important roles during the evolution of pathogenicity of dermatophytic and Coccidioides fungi. The potentially positively selected residues discovered by our analysis may have contributed to the development of new physiological functions of the duplicated Mep genes in dermatophytic fungi and Coccidioides species. Our study adds to the current knowledge of the evolution of Meps in fungi and also establishes a theoretical foundation for future experimental investigations.

References

[1]  Soanes D, Alam I, Cornell M, Wong H, Hedeler C, et al. (2008) Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 3: e2300. doi: 10.1371/journal.pone.0002300
[2]  Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, et al. (2002) Secreted proteases from pathogenic fungi. International Journal of Medical Microbiology 292: 405–419. doi: 10.1078/1438-4221-00223
[3]  Brouta F, Descamps F, Monod M, Vermout S, Losson B, et al. (2002) Secreted metalloprotease gene family of Microsporum canis. Infection and Immunity 70: 5676–5683. doi: 10.1128/iai.70.10.5676-5683.2002
[4]  St Leger RJ, Bidochka MJ, Roberts DW (1994) Isoforms of the Cuticle-Degrading Pr1 Proteinase and Production of a Metalloproteinase by Metarhizium anisopliae. Archives of Biochemistry and Biophysics 313: 1–7. doi: 10.1006/abbi.1994.1350
[5]  Gillespie JP, Bailey AM, Cobb B, Vilcinskas A (2000) Fungi as elicitors of insect immune responses. Archives of Insect Niochemistry and Physiology 44: 49–68. doi: 10.1002/1520-6327(200006)44:2<49::aid-arch1>3.3.co;2-6
[6]  Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal 19: 4004–4014. doi: 10.1093/emboj/19.15.4004
[7]  Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Research 34: D270. doi: 10.1093/nar/gkj089
[8]  Hori T, Kumasaka T, Yamamoto M, Nonaka T, Tanaka N, et al. (2001) Structure of a new ‘aspzincin’ metalloendopeptidase from Grifola frondosa: implications for the catalytic mechanism and substrate specificity based on several different crystal forms. Acta Crystallographica Section D: Biological Crystallography 57: 361–368. doi: 10.1107/s0907444900019740
[9]  Markaryan A, Morozova I, Yu H, Kolattukudy PE (1994) Purification and characterization of an elastinolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung. Infection and Immunity 62: 2149–2157.
[10]  Mathy A, Baldo A, Schoofs L, Cambier L, Defaweux V, et al. (2010) Fungalysin and dipeptidyl-peptidase gene transcription in Microsporum canis strains isolated from symptomatic and asymptomatic cats. Veterinary Microbiology 146: 179–182. doi: 10.1016/j.vetmic.2010.04.019
[11]  Sharpton T, Stajich J, Rounsley S, Gardner M, Wortman J, et al. (2009) Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Research 19: 1722–1731. doi: 10.1101/gr.087551.108
[12]  Burmester A, Shelest E, Gl?ckner G, Heddergott C, Schindler S, et al. (2011) Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biology 12: R7. doi: 10.1186/gb-2011-12-1-r7
[13]  Li J, Yu L, Tian Y, Zhang KQ (2012) Molecular Evolution of the Deuterolysin (M35) Family Genes in Coccidioides. PLoS One 7: e31536. doi: 10.1371/journal.pone.0031536
[14]  Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. doi: 10.1093/nar/gkh340
[15]  Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. doi: 10.1093/oxfordjournals.molbev.a026334
[16]  Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564–577.
[17]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.
[18]  Ronquist F, Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. doi: 10.1093/bioinformatics/btg180
[19]  Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105. doi: 10.1093/bioinformatics/bti263
[20]  Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. doi: 10.2307/2408678
[21]  Chen K, Durand D, Farach-Colton M (2000) NOTUNG: a program for dating gene duplications and optimizing gene family trees. Journal of Computational Biology 7: 429–447. doi: 10.1089/106652700750050871
[22]  Durand D, Halldórsson BV, Vernot B (2006) A hybrid micro-macroevolutionary approach to gene tree reconstruction. Journal of Computational Biology 13: 320–335. doi: 10.1089/cmb.2006.13.320
[23]  James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, et al. (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443: 818–822. doi: 10.1038/nature05110
[24]  Akaike H (1974) A new look at the statistical model identification. Automatic Control, IEEE Transactions on 19: 716–723. doi: 10.1109/tac.1974.1100705
[25]  Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793–808.
[26]  Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818. doi: 10.1093/bioinformatics/14.9.817
[27]  Lewis PO, Holder MT, Holsinger KE (2005) Polytomies and Bayesian phylogenetic inference. Systematic Biology 54: 241–253.
[28]  Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends in Genetics 18: 486–487. doi: 10.1016/s0168-9525(02)02722-1
[29]  Bielawski JP, Yang Z (2004) A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. Journal of Molecular Evolution 59: 121–132. doi: 10.1007/s00239-004-2597-8
[30]  Bielawski J, Yang Z (2003) Maximum likelihood methods for detecting adaptive evolution after gene duplication. Journal of Structural and Functional Genomics 3: 201–212. doi: 10.1007/978-94-010-0263-9_20
[31]  Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586–1591. doi: 10.1093/molbev/msm088
[32]  Suzuki Y, Nei M (2001) Reliabilities of parsimony-based and likelihood-based methods for detecting positive selection at single amino acid sites. Molecular Biology and Evolution 18: 2179–2185. doi: 10.1093/oxfordjournals.molbev.a003764
[33]  Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Molecular Biology and Evolution 15: 568–573. doi: 10.1093/oxfordjournals.molbev.a025957
[34]  Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Molecular Biology and Evolution 22: 1107–1118. doi: 10.1093/molbev/msi097
[35]  Gillespie J (1991) The Causes of Molecular Evolution: Oxford University Press, New York.
[36]  Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution 22: 2472–2479. doi: 10.1093/molbev/msi237
[37]  Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148: 929–936.
[38]  Bonferroni C (1935) Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore del Professore Salvatore Ortu Carboni 13.
[39]  Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilita: Libreria internazionale Seeber.
[40]  Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, et al. (2011) Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. PLoS Genetics 7: e1002345. doi: 10.1371/journal.pgen.1002345
[41]  Ebersberger I, de Matos Simoes R, Kupczok A, Gube M, Kothe E, et al. (2012) A consistent phylogenetic backbone for the fungi. Molecular Biology and Evolution 29: 1319–1334. doi: 10.1093/molbev/msr285
[42]  Marcet-Houben M, Gabaldón T (2009) The tree versus the forest: the fungal tree of life and the topological diversity within the yeast phylome. PLoS One 4: e4357. doi: 10.1371/journal.pone.0004357
[43]  Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences 13: 555–556. doi: 10.1093/bioinformatics/13.5.555
[44]  Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, et al. (2008) Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 3: e2300. doi: 10.1371/journal.pone.0002300
[45]  Machida M, Asai K, Sano M, Tanaka T, Kumagai T, et al. (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438: 1157–1161. doi: 10.1038/nature04300
[46]  Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, et al. (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: 1151–1156. doi: 10.1038/nature04332
[47]  Segurado M, López-Aragón R, Calera JA, Fernández-Abalos JM, Leal F (1999) Zinc-regulated biosynthesis of immunodominant antigens from Aspergillus spp. Infection and Immunity 67: 2377–2382.
[48]  Sentandreu M, Elorza MV, Sentandreu R, Fonzi WA (1998) Cloning and characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albicans. Journal of Bacteriology 180: 282–289.
[49]  Zhao H, Eide DJ (1997) Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.. Molecular and Cellular Biology 17: 5044–5052.
[50]  Galgiani JN (1999) Coccidioidomycosis: a regional disease of national importance: rethinking approaches for control. Annals of Internal Medicine 130: 293–300. doi: 10.7326/0003-4819-130-4-199902160-00015
[51]  Hector R, Laniado-Laborin R (2005) Coccidioidomycosis—a fungal disease of the Americas. PLoS Medicine 2: e2. doi: 10.1371/journal.pmed.0020002
[52]  Untereiner W, Scott J, Naveau F, Sigler L, Bachewich J, et al. (2004) The Ajellomycetaceae, a new family of vertebrate-associated Onygenales. Mycologia 96: 812. doi: 10.2307/3762114
[53]  Durkin M, Kohler S, Schnizlein-Bick C, LeMonte A, Connolly P, et al. (2001) Chronic infection and reactivation in a pulmonary challenge model of histoplasmosis. Journal of Infectious Diseases 183: 1822–1824. doi: 10.1086/320720
[54]  Staib P, Zaugg C, Mignon B, Weber J, Grumbt M, et al. (2010) Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology 156: 884–895. doi: 10.1099/mic.0.033464-0
[55]  Haydon DT, Bastos AD, Knowles NJ, Samuel AR (2001) Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics 157: 7–15.
[56]  Sainudiin R, Wong WSW, Yogeeswaran K, Nasrallah JB, Yang Z, et al. (2005) Detecting site-specific physicochemical selective pressures: applications to the Class I HLA of the human major histocompatibility complex and the SRK of the plant sporophytic self-incompatibility system. Journal of Molecular Evolution 60: 315–326. doi: 10.1007/s00239-004-0153-1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal