[1] | Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57 (2) 276–89. doi: 10.1007/pl00000690
|
[2] | Zimmermann DR, Dours-Zimmermann MT (2008) Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 130 (4) 635–53. doi: 10.1007/s00418-008-0485-9
|
[3] | Wang D, Fawcett JW (2012) The perineuronal net and the control of CNS plasticity. Cell Tissue Res 349 (1) 147–60. doi: 10.1007/s00441-012-1375-y
|
[4] | Kwok JC, Afshari F, García-Alías G, Fawcett JW (2008) Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor Neurol Neurosci 26 (2–3) 131–45.
|
[5] | Morawski M, Brückner G, Arendt T, Matthews RT (2012) Aggrecan: beyond cartilage and into the brain. Int J Biochem Cell Biol 44 (5) 690–3. doi: 10.1016/j.biocel.2012.01.010
|
[6] | Kwok JC, Warren P, Fawcett JW (2012) Chondroitin sulfate: a key molecule in the brain matrix. Int J Biochem Cell Biol 44 (4) 582–6. doi: 10.1016/j.biocel.2012.01.004
|
[7] | Silbert JE, Sugumaran G (2002) Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 54 (4) 177–186. doi: 10.1080/15216540214923
|
[8] | Hockfield S, Kalb RG, Zaremba S, Fryer H (1990) Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harb Symp Quant Biol 55: 505–14. doi: 10.1101/sqb.1990.055.01.049
|
[9] | Pizzorusso R, Medini P, Berardi N, Chierzi S, Fawcett JW, et al. (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298 (5596) 1248–51. doi: 10.1126/science.1072699
|
[10] | McRae PA, Rocco MM, Kelly G, Brumberg JC, Matthews RT (2007) Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex. J Neurosci 27 (20) 5405–5413. doi: 10.1523/jneurosci.5425-06.2007
|
[11] | Hensch TK (2004) Critical period regulation. Annu Rev Neurosci 27: 549–79. doi: 10.1146/annurev.neuro.27.070203.144327
|
[12] | Bandtlow CE, Zimmerman DR (2000) Proteoglycans in the developing brain: new conceptual insights for old proteins. Phys Rev 80 (4) 1267–90.
|
[13] | Pizzorusso T, Medini P, Landi S, Baldini S, Berardi N, et al. (2006) Structural and functional recovery from early monocular deprivation in adult rats. Proc Natl Acad Sci U S A 103 (22) 8517–22. doi: 10.1073/pnas.0602657103
|
[14] | Gogolla N, Caroni P, Lüthi A, Herry C (2009) Perineuronal nets protect fear memories from erasure. Science 325 (5945) 1258–61. doi: 10.1126/science.1174146
|
[15] | Romberg C, Yang S, Melani R, Andrews MR, Horner AE, et al. (2013) Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex. J Neurosci 33 (16) 7057–65. doi: 10.1523/jneurosci.6267-11.2013
|
[16] | Foscarin S, Ponchione D, Pajaj E, Leto K, Gawlak M, et al. (2011) Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoS One 6 (1) e16666. doi: 10.1371/journal.pone.0016666
|
[17] | Carulli D, Rhodes KE, Brown DJ, Bonnert TP, Pollack SJ, et al. (2006) Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 494 (4) 559–77. doi: 10.1002/cne.20822
|
[18] | J?ger C, Lendvai D, Seeger G, Brückner G, Matthews RT, et al. (2013) Perineuronal and perisynaptic extracellular matrix in the human spinal cord. Neuroscience 238: 168–184. doi: 10.1016/j.neuroscience.2013.02.014
|
[19] | Ghez C, Thach WT (2000) The cerebellum. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science, 4th edition. New York: McGraw-Hill, pp. 831–352.
|
[20] | Crook J, Hendrickson A, Erickson A, Possin D, Robinson F (2007) Purkinje cell axon collaterals terminate on Cat-301+ neurons in macaca monkey cerebellum. Neuroscience 149: 834–844. doi: 10.1016/j.neuroscience.2007.08.030
|
[21] | Noda H, Murakami S, Yamada J, Tamada J, Tamaki Y, et al. (1988) Saccadic eye movements evoked by microstimulation of the fastigial nucleus of macaque monkeys. J Neurophysiol 60 (3) 1036–52.
|
[22] | Ohtsuka K, Noda H (1990) Direction-selective saccadic-burst neurons in the fastigial oculomotor region of the macaque. Exp Brain Res 81 (3) 659–62. doi: 10.1007/bf02423517
|
[23] | Fuchs AF, Robinson FR, Straube A (1993) Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol 70 (5) 1723–40.
|
[24] | Robinson FR, Straube A, Fuchs AF (1993) Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol 70 (5) 1741–58.
|
[25] | Goffart L, Chen LL, Sparks DL (2004) Deficits in saccades and fixation during muscimol inactivation of the caudal fastigial nucleus in the rhesus monkey. J Neurophysiol 92 (6) 3351–67. doi: 10.1152/jn.01199.2003
|
[26] | Goldberg ME, Musil SY, Fitzgibbon EJ, Smith M, Olson CR (1993). The role of the cerebellum in the control of saccadic eye movements. In: Mano N, Hamada I, DeLong MR, editors. Role of the cerebellum and basal ganglia in voluntary movement. Amsterdam: Elesvier, pp. 203–2011.
|
[27] | Brückner G, Bringmann A, H?rtig W, K?ppe G, Delpech B, et al. (1998) Acute and long-lasting changes in extracellular-matrix chondroitin-sulphate proteoglycans induced by injection of chondroitinase ABC in the adult rat brain. Exp Brain Res 121: 300–310. doi: 10.1007/s002210050463
|
[28] | Matthews RT, Kelly GM, Zerillo CA, Gray G, Tiemeyer M, et al. (2002) Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J Neurosci 22 (17) 7536–47.
|
[29] | Schmalfeldt M, Dours-Zimmermann MT, Winterhalter KH, Zimmermann DR (1998) Versican V2 is a major extracellular matrix component of the mature bovine brain. J Biol Chem 273: 15758–15764. doi: 10.1074/jbc.273.25.15758
|
[30] | Oike Y, Kimayta K, Shimomura T, Nakazawa K, Suzuki S (1980) Structural analysis of chick-embryo cartilage proteoglycan by selective degradation of chondroitin lyases (chondroitinases) and endo-b-D-galactosidase (keratanase). Biochem J 191: 193–207.
|
[31] | Robinson FR, Soetedjo R, Noto C (2006) Distinct short-term and long-term adaptation to reduce saccade size in monkey. J Neurophysiol 96 (3) 1030–41. doi: 10.1152/jn.01151.2005
|
[32] | Mueller AL, Davis AJ, Robinson FR (2012) Long-term size-increasing adaptation of saccades in macaques. Neuroscience 224: 38–47. doi: 10.1016/j.neuroscience.2012.08.012
|
[33] | Fuchs AF, Robinson DA (1966) A method for measuring horizontal and vertical eye movement chronically in the monkey. J Appl Physiol 21 (3) 1068–70.
|
[34] | Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20 (6) 535–8. doi: 10.1016/0042-6989(80)90128-5
|
[35] | McLaughlin SG (1967) Parametric adjustment in saccadic eye movements. Percept Psychophys 2: 359–362. doi: 10.3758/bf03210071
|
[36] | Straube A, Fuchs AF, Usher S, Robinson FR (1997) Characteristics of saccadic gain adaptation in rhesus macaques. J Neurophysiol 77 (2) 874–95.
|
[37] | Seeberger T, Noto C, Robinson F (2002) Non-visual information does not drive saccade gain adaptation in monkeys. Brain Res 956 (2) 374–9. doi: 10.1016/s0006-8993(02)03577-1
|
[38] | Schuirmann DJ (1987) A comparison of the two onesided tests procedure and the power approach for assessing the equivalence of average bioavailability. J Pharmacokin Biopharm 15: 657–680. doi: 10.1007/bf01068419
|
[39] | Carlson SS, Iwata M, Wight TN (1996) A chondroitin sulfate/keratan sulfate proteoglycan, PG-1000, forms complex with are concentrated in the reticular laminae of electric organ basement membranes. Matrix Biol 15: 281–92. doi: 10.1016/s0945-053x(96)90118-3
|
[40] | Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47 (6) 719–730. doi: 10.1177/002215549904700601
|
[41] | McKay BE, Molineux ML, Turner RW (2004) Biotin is endogenously expressed in select regions of the rat central nervous system. J Comp Neurol 473 (1) 86–96. doi: 10.1002/cne.20109
|
[42] | Goffart L, Chen LL, Sparks DL (2004) Deficits in saccades and fixation during muscimol inactivation of the caudal fastigial nucleus in the rhesus monkey. J Neurophysiol 92 (6) 3351–67. doi: 10.1152/jn.01199.2003
|
[43] | Buzunov E, Mueller A, Straube A, Robinson FR (2013) When during horizontal saccades in moke does cerebellar output affect movement? Brain Res 1503: 33–42. doi: 10.1016/j.brainres.2013.02.001
|
[44] | H?rtig W, Derouiche A, Welt K, Brauer K, Grosche J, et al. (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842: 15–29. doi: 10.1016/s0006-8993(99)01784-9
|
[45] | Horn AK, Brückner G, H?rtig W, Messoudi A (2002) Saccadic omnipause and burst neurons in monkey and human are ensheathed by perineuronal nets but differ in their expression of calcium-binding proteins. J Comp Neurol 445 (3) 341–352. doi: 10.1002/cne.10495
|
[46] | Rhodes KE, Fawcett JW (2004) Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 204: 33–48. doi: 10.1111/j.1469-7580.2004.00261.x
|
[47] | Inaba N, Iwamoto Y, Yoshida K (2003) Changes in cerebellar fastigial burst activity related to saccade gain adaptation in the monkey. Neurosci Res 46 (3) 359–68. doi: 10.1016/s0168-0102(03)00098-1
|
[48] | Sale A, Vetencourt JFM, Medini P, Cenni MC, Baroncelli L, et al. (2007) Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci 10: 679–81. doi: 10.1038/nn1899
|
[49] | Deák á, Bácskai T, Gaál B, Rácz é, Matesz K (2012) Effect of unilateral labyrinthectomy on the molecular composition of perineuronal nets in the lateral vestibular nucleus of the rat. Neurosci Lett 513 (1) 1–5. doi: 10.1016/j.neulet.2012.01.076
|
[50] | Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A, et al. (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133 (8) 2331–47. doi: 10.1093/brain/awq145
|
[51] | Moon LD, Asher RA, Rhodes KE, Fawcett JW (2001) Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nature Neurosci 4: 465–466.
|
[52] | Corvetti L, Rossi F (2005) Degradation of chondroitin sulfate proteoglycans induces sprouting of intact Purkinje axons in the cerebellum of the adult rat. J Neurosci 25 (31) 7150–7158. doi: 10.1523/jneurosci.0683-05.2005
|
[53] | Dityatev A, Brückner G, Diyateva G, Grosche J, Kleene R, et al. (2007) Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev Neurobiol 67 (5 570–88. doi: 10.1002/dneu.20361
|