All Title Author
Keywords Abstract

PLOS ONE  2014 

A New Role for Clathrin Adaptor Proteins 1 and 3 in Lipoplex Trafficking

DOI: 10.1371/journal.pone.0091429

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intracellular protein trafficking through secretory and endocytic pathways depends on the function of adaptor proteins that bind motifs on cargo proteins. The adaptor proteins then recruit coat proteins such as clathrin, enabling the formation of a transport vesicle. While studying the role of the clathrin adaptor proteins, AP-1, AP-2 and AP-3 in viral protein trafficking, we discovered that AP-1 and AP-3 potentially have a role in successful transfection of mammalian cells with DNA-liposome complexes (lipoplexes). We showed that AP-1, -2 and -3 are not required for lipoplexes to enter cells, but that lipoplexes and/or released DNA are unable to reach the nucleus in the absence of AP-1 or AP-3, leading to minimal exogenous gene expression. In contrast, gene expression from liposome-delivered mRNA, which does not require nuclear entry, was not impaired by the absence of AP-1 or AP-3. Despite the use of lipoplexes to mediate gene delivery being so widely used in cell biology and, more recently, gene therapy, the mechanism by which lipoplexes or DNA reach the nucleus is poorly characterised. This work sheds light on the components involved in this process, and demonstrates a novel role for AP-1 and AP-3 in trafficking lipoplexes.

References

[1]  Kirchhausen T, Bonifacino JS, Riezman H (1997) Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr Opin Cell Biol 9: 488–495. doi: 10.1016/s0955-0674(97)80024-5
[2]  Robinson MS (2004) Adaptable adaptors for coated vesicles. Trends Cell Biol 14: 167–174. doi: 10.1016/j.tcb.2004.02.002
[3]  Hirst J, Barlow LD, Francisco GC, Sahlender DA, Seaman MN, et al. (2011) The fifth adaptor protein complex. PLoS Biol 9: e1001170. doi: 10.1371/journal.pbio.1001170
[4]  Camus G, Segura-Morales C, Molle D, Lopez-Verges S, Begon-Pescia C, et al. (2007) The clathrin adaptor complex AP-1 binds HIV-1 and MLV Gag and facilitates their budding. Mol Biol Cell 18: 3193–3203. doi: 10.1091/mbc.e06-12-1147
[5]  Batonick M, Favre M, Boge M, Spearman P, Honing S, et al. (2005) Interaction of HIV-1 Gag with the clathrin-associated adaptor AP-2. Virology 342: 190–200. doi: 10.1016/j.virol.2005.08.001
[6]  Dong X, Li H, Derdowski A, Ding L, Burnett A, et al. (2005) AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 120: 663–674. doi: 10.1016/j.cell.2004.12.023
[7]  Kyere SK, Mercredi PY, Dong X, Spearman P, Summers MF (2012) The HIV-1 matrix protein does not interact directly with the protein interactive domain of AP-3delta. Virus Res 169: 411–414. doi: 10.1016/j.virusres.2012.06.007
[8]  Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84: 7413–7417. doi: 10.1073/pnas.84.21.7413
[9]  Duzgunes N, de Ilarduya CT (2012) Genetic nanomedicine: gene delivery by targeted lipoplexes. Methods Enzymol 509: 355–367. doi: 10.1016/b978-0-12-391858-1.00018-6
[10]  El Ouahabi A, Thiry M, Schiffmann S, Fuks R, Nguyen-Tran H, et al. (1999) Intracellular visualization of BrdU-labeled plasmid DNA/cationic liposome complexes. J Histochem Cytochem 47: 1159–1166. doi: 10.1177/002215549904700908
[11]  Elouahabi A, Ruysschaert JM (2005) Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 11: 336–347. doi: 10.1016/j.ymthe.2004.12.006
[12]  Hoekstra D, Rejman J, Wasungu L, Shi F, Zuhorn I (2007) Gene delivery by cationic lipids: in and out of an endosome. Biochem Soc Trans 35: 68–71. doi: 10.1042/bst0350068
[13]  Motley A, Bright NA, Seaman MN, Robinson MS (2003) Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol 162: 909–918. doi: 10.1083/jcb.200305145
[14]  Cardarelli F, Pozzi D, Bifone A, Marchini C, Caracciolo G (2012) Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Mol Pharm 9: 334–340. doi: 10.1021/mp200374e
[15]  Miller AM, Dean DA (2009) Tissue-specific and transcription factor-mediated nuclear entry of DNA. Adv Drug Deliv Rev 61: 603–613. doi: 10.1016/j.addr.2009.02.008
[16]  Dowty ME, Williams P, Zhang G, Hagstrom JE, Wolff JA (1995) Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc Natl Acad Sci U S A 92: 4572–4576. doi: 10.1073/pnas.92.10.4572
[17]  Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, et al. (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 6: 482–497. doi: 10.1038/sj.gt.3300867
[18]  ur Rehman Z, Hoekstra D, Zuhorn IS (2013) Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano 7: 3767–3777. doi: 10.1021/nn3049494
[19]  Schmidt MR, Maritzen T, Kukhtina V, Higman VA, Doglio L, et al. (2009) Regulation of endosomal membrane traffic by a Gadkin/AP-1/kinesin KIF5 complex. Proc Natl Acad Sci U S A 106: 15344–15349. doi: 10.1073/pnas.0904268106
[20]  Azevedo C, Burton A, Ruiz-Mateos E, Marsh M, Saiardi A (2009) Inositol pyrophosphate mediated pyrophosphorylation of AP3B1 regulates HIV-1 Gag release. Proc Natl Acad Sci U S A 106: 21161–21166. doi: 10.1073/pnas.0909176106
[21]  Vaughan EE, Dean DA (2006) Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol Ther 13: 422–428. doi: 10.1016/j.ymthe.2005.10.004
[22]  Mesika A, Kiss V, Brumfeld V, Ghosh G, Reich Z (2005) Enhanced intracellular mobility and nuclear accumulation of DNA plasmids associated with a karyophilic protein. Hum Gene Ther 16: 200–208. doi: 10.1089/hum.2005.16.200
[23]  Farina F, Pierobon P, Delevoye C, Monnet J, Dingli F, et al. (2013) Kinesin KIFC1 actively transports bare double-stranded DNA. Nucleic Acids Res 41: 4926–4937. doi: 10.1093/nar/gkt204

Full-Text

comments powered by Disqus