全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Reproductive Efficiency of a Mediterranean Endemic Zooxanthellate Coral Decreases with Increasing Temperature along a Wide Latitudinal Gradient

DOI: 10.1371/journal.pone.0091792

Full-Text   Cite this paper   Add to My Lib

Abstract:

Investments at the organismal level towards reproduction and growth are often used as indicators of health. Understanding how such energy allocation varies with environmental conditions may, therefore, aid in predicting possible responses to global climatic change in the near future. For example, variations in seawater temperature may alter the physiological functioning, behavior, reproductive output and demographic traits (e.g., productivity) of marine organisms, leading to shifts in the structure, spatial range, and abundance of populations. This study investigated variations in reproductive output associated with local seawater temperature along a wide latitudinal gradient on the western Italian coast, in the zooxanthellate Mediterranean coral, Balanophyllia europaea. Reproductive potential varied significantly among sites, where B. europaea individuals from the warmest site experienced loss of oocytes during gametogenesis. Most of the early oocytes from warmest sites did not reach maturity, possibly due to inhibition of metabolic processes at high temperatures, causing B. europaea to reabsorb the oocytes and utilize them as energy for other vital functions. In a progressively warming Mediterranean, the efficiency of the energy invested in reproduction could be considerably reduced in this species, thereby affecting vital processes. Given the projected increase in seawater temperature as a consequence of global climate change, the present study adds evidence to the threats posed by high temperatures to the survival of B. europaea in the next decades.

References

[1]  Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333: 418–422. doi: 10.1126/science.1204794
[2]  Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al.. (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press. 996 p.
[3]  Parry M (2000) Assessment of potential effects and adaptions for climate change in Europe: The europe acacia project (a concerted action towards a comprehensive climate impacts and adaptions assessment for the European Union). Jackson Environment Institute, University of East Anglia. 320 p.
[4]  Field CB, Barros V, Stocker TF, Dahe Q (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press. 594 p.
[5]  Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25: 250–260. doi: 10.1016/j.tree.2009.10.009
[6]  Brierley A, Kingsford M (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19: 602–614. doi: 10.1016/j.cub.2009.05.046
[7]  Hoegh-Guldberg OVE, Pearse JS (1995) Temperature, food availability, and the development of marine invertebrate larvae. Am Zool 35: 415–425. doi: 10.1093/icb/35.4.415
[8]  Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature 417: 70–73. doi: 10.1038/417070a
[9]  Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237: 133–141. doi: 10.3354/meps237133
[10]  Albright R, Mason B (2013) Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PloS One 8: e56468. doi: 10.1371/journal.pone.0056468
[11]  Linares C, Coma R, Zabala M (2008) Effects of a mass mortality event on gorgonian reproduction. Coral reefs 27: 27–34. doi: 10.1007/s00338-007-0285-z
[12]  Negri AP, Marshall PA, Heyward AJ (2007) Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26: 759–763. doi: 10.1007/s00338-007-0258-2
[13]  Coma R, Ribes M, Serrano E, Jiménez E, Salat J, et al. (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci 106: 6176–6181. doi: 10.1073/pnas.0805801106
[14]  Cupido R, Cocito S, Manno V, Ferrando S, Peirano A, et al. (2012) Sexual structure of a highly reproductive, recovering gorgonian population: quantifying reproductive output. Mar Ecol Prog Ser 469: 25–36. doi: 10.3354/meps09976
[15]  Gori A, Linares C, Rossi S, Coma R, Gili JM (2007) Spatial variability in reproductive cycle of the gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the Western Mediterranean Sea. Mar Biol 151: 1571–1584. doi: 10.1007/s00227-006-0595-7
[16]  Torrents O, Garrabou J (2011) Fecundity of red coral Corallium rubrum (L.) populations inhabiting in contrasting environmental conditions in the NW Mediterranean. Mar Biol 158: 1019–1028. doi: 10.1007/s00227-011-1627-5
[17]  Kipson S, Linares C, Teixidó N, Bakran-Petricioli T, Garrabou J (2012) Effects of thermal stress on the early development stages of a gorgonian coral. Mar Ecol Prog Ser 470: 69–78. doi: 10.3354/meps09982
[18]  Bauman AG, Baird AH, Cavalcante GH (2011) Coral reproduction in the world's warmest reefs: southern Persian Gulf (Dubai, United Arab Emirates). Coral Reefs 30: 405–413. doi: 10.1007/s00338-010-0711-5
[19]  Goffredo S, Radeti? J, Airi V, Zaccanti F (2005) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae) in the Mediterranean. 1. Morphological aspects of gametogenesis and ontogenesis. Mar Biol 147: 485–495. doi: 10.1007/s00227-005-1567-z
[20]  Lesser MP (2013) Using energetic budgets to assess the effects of environmental stress on corals: are we measuring the right things?. Coral Reefs 32: 25–33. doi: 10.1007/s00338-012-0993-x
[21]  Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z, editor. Coral reefs. Ecosystems of the World. New York: Elsiever. vol. 25: , pp. 75–87.
[22]  Henry LA, Hart M (2005) Regeneration from injury and resource allocation in sponges and corals - a review. International review of hydrobiology 90: 125–158. doi: 10.1002/iroh.200410759
[23]  Graham EM, Baird AH, Connolly SR (2008) Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27: 529–539. doi: 10.1007/s00338-008-0361-z
[24]  Weil E, Cróquer A, Urreiztieta I (2009) Yellow band disease compromises the reproductive output of the Caribbean reef-building coral Montastraea faveolata (Anthozoa, Scleractinia). Dis Aquat Org 87: 45. doi: 10.3354/dao02103
[25]  Tamelander J (2002) Coral recruitment following a mass mortality event. Ambio 31: 551–557. doi: 10.1639/0044-7447(2002)031[0551:crfamm]2.0.co;2
[26]  Goffredo S, Arnone S, Zaccanti F (2002) Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar Ecol Prog Ser 229: 83–94. doi: 10.3354/meps229083
[27]  Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, et al. (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54: 930–937. doi: 10.4319/lo.2009.54.3.0930
[28]  Caroselli E, Prada F, Pasquini L, Nonnis Marzano F, Zaccanti F, et al. (2011) Environmental implications of skeletal micro-density and porosity variation in two scleractinian corals. Zoology 114: 255–264. doi: 10.1016/j.zool.2011.04.003
[29]  Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F (2007) Variation in biometry and population density of solitary corals with environmental factors in the Mediterranean Sea. Mar Biol 152: 351–361. doi: 10.1007/s00227-007-0695-z
[30]  Goffredo S, Caroselli E, Mattioli G, Pignotti E, Zaccanti F (2008) Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 27: 623–632. doi: 10.1007/s00338-008-0362-y
[31]  Goffredo S, Gasparini G, Marconi G, Putignano MT, Pazzini C, et al. (2010) Gonochorism and planula brooding in the Mediterranean endemic orange coral Astroides calycularis (Scleractinia: Dendrophylliidae). Morphological aspects of gametogenesis and ontogenesis. Mar Biol Res 6: 421–436. doi: 10.1080/17451000903428488
[32]  Goffredo S, Marchini C, Rocchi M, Airi V, Caroselli E, et al. (2012) Unusual pattern of embryogenesis of Caryophyllia inornata (Scleractinia, Caryophylliidae) in the Mediterranean Sea: Maybe agamic reproduction?. J Morphol 273: 943–956. doi: 10.1002/jmor.20039
[33]  Korta M, Murua H, Kurita Y, Kjesbu OS (2010) How are the oocytes recruited in an indeterminate fish? Applications of stereological techniques along with advanced packing density theory on European hake (Merluccius merluccius L.). Fish Res 104: 56–63. doi: 10.1016/j.fishres.2010.01.010
[34]  Lowerre-Barbieri SK, Ganias K, Saborido-Rey F, Murua H, Hunter JR (2011) Reproductive timing in marine fishes: variability, temporal scales, and methods. Mar Coast Fish 3: 71–91. doi: 10.1080/19425120.2011.556932
[35]  Altman DG (1991) Practical statistics for medical research. New York: Chapman & Hall, CRC. 624 p.
[36]  Potvin C, Roff DA (1993) Distribution-free and robust statistical methods: viable alternatives to parametric statistics?. Ecology 74: 1617–1628. doi: 10.2307/1939920
[37]  Michalek-Wagner K, Willis BL (2001) Impacts of bleaching on the soft coral Lobophytum compactum. I. Fecundity, fertilization and offspring viability. Coral Reefs 19: 231–239. doi: 10.1007/s003380170003
[38]  McClintock JB, Watts SA (1990) The effects of photoperiod on gametogenesis in the tropical sea urchin Eucidaris tribuloides (Lamarck)(Echinodermata, Echinoidea). J Exp Mar Biol Ecol 139: 175–184. doi: 10.1016/0022-0981(90)90145-3
[39]  Goffredo S, Airi V, Radeti? J, Zaccanti F (2006) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae) in the Mediterranean. 2. Quantitative aspects of the annual reproductive cycle. Mar Biol 148: 923–931. doi: 10.1007/s00227-005-0137-8
[40]  Goffredo S, Gasparini G, Marconi G, Putignano MT, Pazzini C, et al. (2011) Sexual reproduction in the Mediterranean endemic orange coral Astroides calycularis (Scleractinia, Dendrophylliidae). Bull Mar Sci 87: 589–604. doi: 10.5343/bms.2010.1068
[41]  Ribes M, Coma R, Rossi S, Micheli M (2007) Cycle of gonadal development in Eunicella singularis (Cnidaria: Octocorallia): trends in sexual reproduction in gorgonians. Inv Biol 126: 307–317. doi: 10.1111/j.1744-7410.2007.00101.x
[42]  Harrison PL (2011) Sexual reproduction of scleractinian corals. In Coral Reefs: an ecosystem in transition. Springer Netherlands. pp. 59–85.
[43]  Kru?i? P, ?uljevi? A, Nikoli? V (2008) Spawning of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Southern Adriatic Sea. Coral Reefs 27: 337–341. doi: 10.1007/s00338-007-0334-7
[44]  Kersting DK, Casado C, López-Legentil S, Linares C (2013) Unexpected patterns in the sexual reproduction of the Mediterranean scleractinian coral Cladocora caespitosa. Mar Ecol Prog Ser 486: 165–171. doi: 10.3354/meps10356
[45]  De Putron SJ, Ryland JS (2009) Effect of seawater temperature on reproductive seasonality and fecundity of Pseudoplexaura porosa (Cnidaria, Octocorallia): latitudinal variation in Caribbean gorgonian reproduction. Invertebr Biol 128: 213–222. doi: 10.1111/j.1744-7410.2009.00170.x
[46]  Fadlallah YH (1983) Sexual reproduction, development and larval biology in scleractinian corals. Coral reefs 2: 129–150. doi: 10.1007/bf00336720
[47]  Richmond RH, Hunter CL (1990) Reproduction and recruitment of corals: Comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar Ecol Prog Ser 60: 185–203. doi: 10.3354/meps060185
[48]  Nakamura E, Yokohama Y, Tanaka J (2004) Photosynthetic activity of a temperate coral Acropora pruinosa (Scleractinia, Anthozoa) with symbiotic algae in Japan. Phycol Res 52: 38–44. doi: 10.1046/j.1322-0829.2003.00323.x
[49]  Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69: 347–354. doi: 10.3989/scimar.2005.69n3347
[50]  Rinkevich B (1989) The contribution of photosynthetic products to coral reproduction. Mar Biol 101: 259–263. doi: 10.1007/bf00391465
[51]  Ramirez-Llodra E (2002) Fecundity and life-history strategies in marine invertebrates. Adv Mar Biol 43: 87–170. doi: 10.1016/s0065-2881(02)43004-0
[52]  Hayward A, Gillooly JF (2011) The cost of sex: quantifying energetic investment in gamete production by males and females. PloS One 6: e16557. doi: 10.1371/journal.pone.0016557
[53]  Leuzinger S, Anthony KR, Willis BL (2003) Reproductive energy investment in corals: scaling with module size. Oecologia 136: 524–531. doi: 10.1007/s00442-003-1305-5
[54]  Maltby L (1999) Studying stress: the importance of organism-level responses. Ecol Appl 9: 431–440. doi: 10.1890/1051-0761(1999)009[0431:sstioo]2.0.co;2
[55]  Nespolo RF, Halkett F, Figueroa CC, Plantegenest M, Simon JC (2009) Evolution of trade-offs between sexual and asexual phases and the role of reproductive plasticity in the genetic architecture of aphid life histories. Evolution 63: 2402–2412. doi: 10.1111/j.1558-5646.2009.00706.x
[56]  Fischer B, Dieckmann U, Taborsky B (2011) When to store energy in a stochastic environment. Evolution 65: 1221–1232. doi: 10.1111/j.1558-5646.2010.01198.x
[57]  Leuzinger S, Willis BL, Anthony KR (2012) Energy allocation in a reef coral under varying resource availability. Mar Biol 159: 177–186. doi: 10.1007/s00227-011-1797-1
[58]  Fantazzini P, Mengoli S, Evangelisti S, Pasquini L, Mariani M, et al. (2013) Time-Domain NMR study of Mediterranean scleractinian corals reveals skeletal-porosity sensitivity to environmental changes. Environ Sci Technol 47: 12679–12686. doi: 10.1021/es402521b
[59]  Lueg JR, Moulding AL, Kosmynin VN, Gilliam DS (2012) Gametogenesis and spawning of Solenastrea bournoni and Stephanocoenia intersepta in southeast Florida, USA. J Mar Biol 2012.
[60]  Okubo N, Motokawa T, Omori M (2007) When fragmented coral spawn? Effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar Biol 151: 353–363. doi: 10.1007/s00227-006-0490-2
[61]  Goffredo S, Mattioli G, Zaccanti F (2004) Growth and population dynamics model of the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 23: 433–443. doi: 10.1007/s00338-004-0395-9
[62]  Sagarin RD, Gaines SD, Gaylord B (2006) Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends Ecol Evol 21: 524–530. doi: 10.1016/j.tree.2006.06.008
[63]  Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mémoires de l’Institut océanographique, Monaco 11..
[64]  Goffredo S, Mezzomonaco L, Zaccanti F (2004) Genetic differentiation among populations of the Mediterranean hermaphroditic brooding coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar Biol 145: 1075–1083. doi: 10.1007/s00227-004-1403-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133