All Title Author
Keywords Abstract

PLOS ONE  2014 

Side Chain Hydrophobicity Modulates Therapeutic Activity and Membrane Selectivity of Antimicrobial Peptide Mastoparan-X

DOI: 10.1371/journal.pone.0091007

Full-Text   Cite this paper   Add to My Lib

Abstract:

The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the “antibiotic era”. Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further optimization is needed if AMPs are to find broad use as antibiotics. In the present work, eight analogues of mastoparan-X (MPX) were investigated, having side chain modifications in position 1, 8 and 14 to modulate peptide hydrophobicity. The self-association properties of the peptides were characterized, and the peptide-membrane interactions in model membranes were compared with the bactericidal and haemolytic properties. Alanine substitution at position 1 and 14 resulted in higher target selectivity (red blood cells versus bacteria), but also decreased bactericidal potency. For these analogues, the gain in target selectivity correlated to biophysical parameters showing an increased effective charge and reduction in the partitioning coefficient for membrane insertion. Introduction of an unnatural amino acid, with an octyl side chain by amino acid substitution, at positions 1, 8 and 14 resulted in increased bactericidal potency at the expense of radically reduced membrane target selectivity. Overall, optimized membrane selectivity or bactericidal potency was achieved by changes in side chain hydrophobicity of MPX. However, enhanced potency was achieved at the expense of selectivity and vice versa in all cases.

References

[1]  Wenzel RP (2004) The antibiotic pipeline – Challenges, cost, and values. N Engl J Med 351: 523–526. doi: 10.1056/nejmp048093
[2]  Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7: 629–641. doi: 10.1038/nrmicro2200
[3]  Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389–395. doi: 10.1038/415389a
[4]  Smet KD, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol lett 27: 1337–1347. doi: 10.1007/s10529-005-0936-5
[5]  Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Cur Eye Res 30: 505–515. doi: 10.1080/02713680590968637
[6]  Mookherjee N, Hancock REW (2007) Cationic host defense peptides: Innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci 64: 922–933. doi: 10.1007/s00018-007-6475-6
[7]  Guillaume D, Cottin S, Blanc E, Rees AR, Temsamani J (2003) Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem 278: 31192–31201. doi: 10.1074/jbc.m303938200
[8]  Henriques ST, Melo MN, Castanho MARB (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399: 1–7. doi: 10.1042/bj20061100
[9]  Epand RF, Maloy WL, Ramamoorthy A, Epand RM (2010) Probing the “charge cluster mechanism” in amphipatic helical cationic antimicrobial peptides. Biochemistry 49: 4076–4084. doi: 10.1021/bi100378m
[10]  Henriksen JR, Andresen TL (2011) Thermodynamic profiling of peptide membrane interactions by isothermal titration calorimetry: a search for pores and micelles. Biophys J 101: 100–109. doi: 10.1016/j.bpj.2011.05.047
[11]  Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81: 1475–1485. doi: 10.1016/s0006-3495(01)75802-x
[12]  Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758: 1184–1202. doi: 10.1016/j.bbamem.2006.04.006
[13]  Murray D, Arbuzova A, Hangyás-Mihályné G, Gambhir A, Ben-Tal N, et al. (1999) Electrostatic Properties of membranes containing acidic lipids and adsorbed basic peptides: Theory and experiment. Biophys J 77: 3176–3188. doi: 10.1016/s0006-3495(99)77148-1
[14]  Etzerodt T, Henriksen JR, Rasmussen P, Clausen MH, Andresen TL (2011) Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X. Biophys J 100: 399–409. doi: 10.1016/j.bpj.2010.11.040
[15]  Seelig J (2004) Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta 1666: 40–50. doi: 10.1016/j.bbamem.2004.08.004
[16]  Wieprecht T, Apostolov O, Beyermann M, Seelig J (2000) Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry 39: 442–452. doi: 10.1021/bi992146k
[17]  Jiang Z, Vasil AI, Hale JD, Hancock REW, Vasil ML, et al. (2007) Effects of net charge and the number of positively charged residues on the biological activity of amphipatic α-helical cationic antimicrobial peptides. Pept Sci 90: 369–383. doi: 10.1002/bip.20911
[18]  Wieprecht T, Dathe M, Beyermann M, Krause E, Maloy WL, et al. (1997) Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry 36: 6124–6132. doi: 10.1021/bi9619987
[19]  Dathe M, Wieprecht T, Nikolenko H, Handel L, Maloy WL, et al. (1997) Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipatic helical peptides. FEBS Lett 403: 208–212. doi: 10.1016/s0014-5793(97)00055-0
[20]  Song YM, Yang ST, Lim SS, Kim Y, Hahm KS, et al. (2004) Effects of L- or D-Pro incorporation into hydrophobic or hydrophilic helix face of amphipatic α-helical model peptide on structure and cell activity. Biochem Biophys Res Commun 314: 615–621. doi: 10.1016/j.bbrc.2003.12.142
[21]  Giuliani A, Pirri G, Nicoletto S (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2: 1–33. doi: 10.2478/s11535-007-0010-5
[22]  Chu-Kung AF, Nguyen R, Bozzelli KN, Tirrell M (2010) Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J Colloid Interface Sci 345: 160–167. doi: 10.1016/j.jcis.2009.11.057
[23]  Japelj B, Zorko M, Majerle A, Pristovsek P, Sanchez-Gomez S, et al. (2007) The acyl group as the central element of the structural organization of antimicrobial lipopeptide. J Am Chem Soc 129: 1022–1023. doi: 10.1021/ja067419v
[24]  Lockwood NA, Haseman JR, Tirrell MV, Mayo KH (2004) Acylation of SC4 dodecapeptide increases bactericidal potency against Gram-positive bacteria, including drug-resistant strains. Biochem J 378: 93–103. doi: 10.1042/bj20031393
[25]  Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci 103: 15997–16002. doi: 10.1073/pnas.0606129103
[26]  Laverty G, McLaughlin M, Shaw C, Gorman SP, Gilmore BF (2010) Antimicrobial activity of short, synthetic cationic lipopeptides. Chem Biol Drug Des 75: 563–569. doi: 10.1111/j.1747-0285.2010.00973.x
[27]  Nakajima T, Uzu S, Wakamatsu K, Saito K, Miyazawa T, et al. (1986) Amphiphilic peptides in wasp venom. Biopolymers 25: 115–121.
[28]  Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4: 2411–2423. doi: 10.1002/pro.5560041120
[29]  Wilhelm M, Zhao CL, Wang Y, Xu R, Winnik MA, et al. (1991) Poly(styrene-ethylene oxide) Block Copolymer Micelle Formation in Water: A Fluorescence Probe Study. Macromolecules 24: 1033–1040. doi: 10.1021/ma00005a010
[30]  Astafieva I, Zhong XF, Eisenberg A (1993) Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26: 7339–7352. doi: 10.1021/ma00078a034
[31]  Henriksen JR, Andresen TL, Feldborg LN, Duelund L, Ipsen JH (2010) Understanding detergent effects on lipid membranes: a model study of lysolipids. Biophys J 98: 2199–2205. doi: 10.1016/j.bpj.2010.01.037
[32]  Beschiaschvili G, Seelig J (1990) Peptide binding to lipid bilayers. Binding isotherms and zeta-potential of a cyclic somatostatin analogue. Biochemistry 29: 10995–11000. doi: 10.1021/bi00501a018
[33]  Heerklotz H, Seelig J (2000) Titration calorimetry of surfactant-membrane partitioning and membrane solubilization. Biochim Biophys Acta 1508: 69–85. doi: 10.1016/s0304-4157(00)00009-5
[34]  Hristova K, White SH (2005) An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces. Biochemistry 44: 12614–12619. doi: 10.1021/bi051193b
[35]  Hellmann N, Schwarz G (1998) Peptide-liposome association. A critical examination with mastoparan-X. Biochim. Biophys Acta 1369: 267–277. doi: 10.1016/s0005-2736(97)00230-7
[36]  Ladokhin AS, White SH (2001) Protein chemistry at membrane interfaces:non-additivity of electrostatic and hydrophobic interactions. J Mol Biol 309: 543–552. doi: 10.1006/jmbi.2001.4684
[37]  Klocek G, Schulthess T, Shai Y, Seelig J (2009) Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation. Biochemistry 48: 2586–2596. doi: 10.1021/bi802127h
[38]  Wenk MR, Seelig J (1998) Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation. Biochemistry 37: 3909–3916. doi: 10.1021/bi972615n
[39]  Malina A, Shai Y (2005) Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem J 390: 695–702. doi: 10.1042/bj20050520

Full-Text

comments powered by Disqus