All Title Author
Keywords Abstract

PLOS ONE  2014 

De Novo Assembly of Auricularia polytricha Transcriptome Using Illumina Sequencing for Gene Discovery and SSR Marker Identification

DOI: 10.1371/journal.pone.0091740

Full-Text   Cite this paper   Add to My Lib

Abstract:

Auricularia polytricha (Mont.) Sacc., a type of edible black-brown mushroom with a gelatinous and modality-specific fruiting body, is in high demand in Asia due to its nutritional and medicinal properties. Illumina Solexa sequenceing technology was used to generate very large transcript sequences from the mycelium and the mature fruiting body of A. polytricha for gene discovery and molecular marker development. De novo assembly generated 36,483 ESTs with an N50 length of 636 bp. A total of 28,108 ESTs demonstrated significant hits with known proteins in the nr database, and 94.03% of the annotated ESTs showed the greatest similarity to A. delicata, a related species of A. polytricha. Functional categorization of the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed the conservation of genes involved in various biological processes in A. polytricha. Gene expression profile analysis indicated that a total of 2,057 ESTs were differentially expressed, including 1,020 ESTs that were up-regulated in the mycelium and 1,037 up-regulated in the fruiting body. Functional enrichment showed that the ESTs associated with biosynthesis, metabolism and assembly of proteins were more active in fruiting body development. The expression patterns of homologous transcription factors indicated that the molecular mechanisms of fruiting body formation and development were not exactly the same as for other agarics. Interestingly, an EST encoding tyrosinase was significantly up-regulated in the fruiting body, indicating that melanins accumulated during the processes of the formation of the black-brown color of the fruiting body in A. polytricha development. In addition, a total of 1,715 potential SSRs were detected in this transcriptome. The transcriptome analysis of A. polytricha provides valuable sequence resources and numerous molecular markers to facilitate further functional genomics studies and genetic researches on this fungus.

References

[1]  Abd Razak DL, Abdullah N, Khir Johari NM, Sabaratnam V (2013) Comparative study of mycelia growth and sporophore yield of Auricularia polytricha (Mont.) Sacc on selected palm oil wastes as fruiting substrate. Appl Microbiol Biotechnol 97: 3207–3213. doi: 10.1007/s00253-012-4135-8
[2]  Kirk PM, Canon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi (10th edition). Wallingford, UK: CABI. 549.
[3]  MacLean D, Jones JD, Studholme DJ (2009) Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol 7: 287–296.
[4]  Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11: 31–46. doi: 10.1038/nrg2626
[5]  Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57–63. doi: 10.1038/nrg2484
[6]  Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7: 334–346. doi: 10.1111/j.1467-7652.2008.00396.x
[7]  Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, et al. (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99: 193–208. doi: 10.3732/ajb.1100394
[8]  Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, et al. (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28: 957–963. doi: 10.1038/nbt.1643
[9]  Stajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, et al. (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107: 11889–11894. doi: 10.1073/pnas.1003391107
[10]  Tang LH, Jian HH, Song CY, Bao DP, Shang XD, et al. (2013) Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Appl Microbiol Biotechnol 97: 4977–4989. doi: 10.1007/s00253-013-4832-y
[11]  Zhong M, Liu B, Wang X, Liu L, Lun Y, et al. (2013) De novo characterization of Lentinula edodes C91–3 transcriptome by deep Solexa sequencing. Biochem Biophys Res Commun 431: 111–115. doi: 10.1016/j.bbrc.2012.12.065
[12]  Chen S, Xu J, Liu C, Zhu Y, Nelson DR, et al. (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3: 913. doi: 10.1038/ncomms1923
[13]  Yu GJ, Wang M, Huang J, Yin YL, Chen YJ, et al. (2012) Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. PLoS One 7: e44031. doi: 10.1371/journal.pone.0044031
[14]  Wang M, Gu B, Huang J, Jiang S, Chen Y, et al. (2013) Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 8: e56686. doi: 10.1371/journal.pone.0056686
[15]  Zheng P, Xia Y, Xiao G, Xiong C, Hu X, et al. (2011) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12: R116. doi: 10.1186/gb-2011-12-11-r116
[16]  Yin Y, Yu G, Chen Y, Jiang S, Wang M, et al. (2012) Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS One 7: e51853. doi: 10.1371/journal.pone.0051853
[17]  Kües U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64: 316–353. doi: 10.1128/mmbr.64.2.316-353.2000
[18]  Ohm RA, de Jong JF, de Bekker C, W?sten HA, Lugones LG (2011) Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation. Mol Microbiol 81: 1433–1445. doi: 10.1111/j.1365-2958.2011.07776.x
[19]  Raper CA, Raper JR, Miller RE (1972) Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 64: 1088–1117. doi: 10.2307/3758075
[20]  Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: 644–652. doi: 10.1038/nbt.1883
[21]  Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 138–148.
[22]  Conesa A, G?tz S, García-Gómez JM, Terol J, Talón M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676. doi: 10.1093/bioinformatics/bti610
[23]  Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41.
[24]  Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30. doi: 10.1093/nar/28.1.27
[25]  Park J, Park J, Jang S, Kim S, Kong S, et al. (2008) FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics 24: 1024–1025. doi: 10.1093/bioinformatics/btn058
[26]  Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, et al.. (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33 (Web Server issue): W116–W120.
[27]  Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628. doi: 10.1038/nmeth.1226
[28]  Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279–284. doi: 10.1016/s0166-4328(01)00297-2
[29]  da Maia LC, Palmieri DA, de Souza VQ, Kopp MM, de Carvalho FI, et al. (2008) SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics 2008: 412696. doi: 10.1155/2008/412696
[30]  Martin J, Bruno VM, Fang Z, Meng X, Blow M, et al. (2010) Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics11: 663. doi: 10.1186/1471-2164-11-663
[31]  Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12: 671–682. doi: 10.1038/nrg3068
[32]  Robertson G, Schein J, Chiu R, Corbett R, Field M, et al. (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7: 909–912. doi: 10.1038/nmeth.1517
[33]  Ye J, Fang L, Zheng H, Zhang Y, Chen J, et al. (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34: W293–297. doi: 10.1093/nar/gkl031
[34]  Casselton LA, Olesnicky NS (1998) Molecular Genetics of Mating Recognition in Basidiomycete Fungi. Microbiol Mol Biol Rev 62: 55–70.
[35]  Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, et al. (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A 109: 17501–17506. doi: 10.1073/pnas.1206847109
[36]  Linden H, Macino G (1997) White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16: 98–109. doi: 10.1093/emboj/16.1.98
[37]  Corrochano LM (2011) Fungal photobiology: a synopsis. IMA Fungus 2: 25–28. doi: 10.5598/imafungus.2011.02.01.04
[38]  Terashima K, Yuki K, Muraguchi H, Akiyama M, Kamada T (2005) The dst1 gene involved in mushroom photomorphogenesis of Coprinus cinereus encodes a putative photoreceptor for blue light. Genetics 171: 101–108. doi: 10.1534/genetics.104.040048
[39]  Sano H, Narikiyo T, Kaneko S, Yamazaki T, Shishido K (2007) Sequence analysis and expression of a blue-light photoreceptor gene, Le.phrA from the basidiomycetous mushroom Lentinula edodes. Biosci Biotechnol Biochem 71: 2206–2213. doi: 10.1271/bbb.70170
[40]  Sano H, Kaneko S, Sakamoto Y, Sato T, Shishido K (2009) The basidiomycetous mushroom Lentinula edodes white collar-2 homolog PHRB, a partner of putative blue-light photoreceptor PHRA, binds to a specific site in the promoter region of the L. edodes tyrosinase gene. Fungal Genet Biol 46: 333–341. doi: 10.1016/j.fgb.2009.01.001
[41]  Kamada T, Sano H, Nakazawa T, Nakahori K (2010) Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Genet Biol 47: 917–921. doi: 10.1016/j.fgb.2010.05.003
[42]  Endo H, Kajiwara S, Tsunoka O, Shishido K (1994) A novel cDNA, priBc, encoding a protein with a Zn(II)2Cys6 zinc cluster DNA-binding motif, derived from the basidiomycete Lentinus edodes. Gene 139: 117–121. doi: 10.1016/0378-1119(94)90533-9
[43]  Muraguchi H, Fujita T, Kishibe Y, Konno K, Ueda N, et al. (2008) The exp1 gene essential for pileus expansion and autolysis of the inky cap mushroom Coprinopsis cinerea (Coprinus cinereus) encodes an HMG protein. Fungal Genet Biol 45: 890–896. doi: 10.1016/j.fgb.2007.11.004
[44]  Murata Y, Fujii M, Zolan ME, Kamada T (1998) Molecular analysis of pcc1, a gene that leads to A-regulated sexual morphogenesis in Coprinus cinereus. Genetics 149: 1753–1761.
[45]  Wu Q, Tan Z, Liu H, Gao L, Wu S, et al. (2010) Chemical characterization of Auricularia auricula polysaccharides and its pharmacological effect on heart antioxidant enzyme activities and left ventricular function in aged mice. Int J Biol Macromol 46: 284–288. doi: 10.1016/j.ijbiomac.2010.01.016
[46]  Gawlik-Dziki U, Z?otek U, ?wieca M (2008) Characterization of polyphenol oxidase from butter lettuce (Lactuca sativa var. capitata L.). Food Chem 107: 129–135. doi: 10.1016/j.foodchem.2007.07.068
[47]  Soler-Rivas C, M?ller AC, Arpin N, Olivier JM, Wichers HJ (2001) Induction of a tyrosinase mRNA in Agaricus bisporus upon treatment with a tolaasin preparation from Pseudomonas tolaasii. Physiol Mol Plant Pathol 58: 95–99. doi: 10.1017/s0953756296002729
[48]  Wichers HJ, Recourt K, Hendriks M, Ebbelaar CE, Biancone G, et al. (2003) Cloning, expression and characterisation of two tyrosinase cDNAs from Agaricus bisporus. Appl Microbiol Biotechnol 61: 336–341. doi: 10.1007/s00253-002-1194-2
[49]  Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23: 48–55. doi: 10.1016/j.tibtech.2004.11.005
[50]  Zheng Y, Zhang G, Lin F, Wang Z, Jin G, et al. (2008) Development of microsatellite markers and construction of genetic map in rice blast pathogen Magnaporthe grisea. Fungal Genet Biol 45: 1340–1347. doi: 10.1016/j.fgb.2008.07.012
[51]  Floudas D, Binder M, Riley R, Barry K, Blanchette RA, et al. (2012) The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science 336: 1715–1719. doi: 10.1126/science.1221748
[52]  Qian J, Xu H, Song J, Xu J, Zhu Y, et al. (2013) Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum. Gene 512: 331–336. doi: 10.1016/j.gene.2012.09.127
[53]  Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10: 72–80.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal