All Title Author
Keywords Abstract

PLOS ONE  2014 

PGC-1α-Mediated Branched-Chain Amino Acid Metabolism in the Skeletal Muscle

DOI: 10.1371/journal.pone.0091006

Full-Text   Cite this paper   Add to My Lib

Abstract:

Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

References

[1]  Puigserver P, Wu Z, Park CW, Graves R, Wright M, et al. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839. doi: 10.1016/s0092-8674(00)81410-5
[2]  Liang H, Balas B, Tantiwong P, Dube J, Goodpaster BH, et al. (2009) Whole body overexpression of PGC-1alpha has opposite effects on hepatic and muscle insulin sensitivity. Am J Physiol Endocrinol Metab 296: E945–954. doi: 10.1152/ajpendo.90292.2008
[3]  Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24: 78–90. doi: 10.1210/er.2002-0012
[4]  Tadaishi M, Miura S, Kai Y, Kano Y, Oishi Y, et al. (2011) Skeletal muscle-specific expression of PGC-1alpha-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake. PLoS One 6: 8. doi: 10.1371/journal.pone.0028290
[5]  Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, et al. (2009) PGC-1alpha and PGC-1beta regulate mitochondrial density in neurons. J Biol Chem 284: 21379–21385. doi: 10.1074/jbc.m109.018911
[6]  Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, et al. (2003) PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci U S A 100: 12378–12383. doi: 10.1073/pnas.2135217100
[7]  Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18: 357–368. doi: 10.1101/gad.1177604
[8]  Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1: 361–370. doi: 10.1016/j.cmet.2005.05.004
[9]  Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582: 46–53. doi: 10.1016/j.febslet.2007.11.034
[10]  Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG (2003) Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell 12: 1137–1149. doi: 10.1016/s1097-2765(03)00391-5
[11]  Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, et al. (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A 106: 21401–21406. doi: 10.1073/pnas.0909131106
[12]  Miura S, Kai Y, Kamei Y, Ezaki O (2008) Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to beta2-adrenergic receptor activation and exercise. Endocrinology 149: 4527–4533. doi: 10.1210/en.2008-0466
[13]  Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, et al. (2012) A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151: 1319–1331. doi: 10.1016/j.cell.2012.10.050
[14]  Yoshioka T, Inagaki K, Noguchi T, Sakai M, Ogawa W, et al. (2009) Identification and characterization of an alternative promoter of the human PGC-1alpha gene. Biochem Biophys Res Commun 381: 537–543. doi: 10.1016/j.bbrc.2009.02.077
[15]  Tadaishi M, Miura S, Kai Y, Kawasaki E, Koshinaka K, et al. (2011) Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1alpha mRNA: a role of beta2-adrenergic receptor activation. Am J Physiol Endocrinol Metab 300: E341–349. doi: 10.1152/ajpendo.00400.2010
[16]  Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, et al. (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418: 797–801. doi: 10.1038/nature00904
[17]  Miura S, Kai Y, Ono M, Ezaki O (2003) Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1alpha down-regulates GLUT4 mRNA in skeletal muscles. J Biol Chem 278: 31385–31390. doi: 10.1074/jbc.m304312200
[18]  Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, et al. (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282: 30014–30021. doi: 10.1074/jbc.m704817200
[19]  Miura S, Tomitsuka E, Kamei Y, Yamazaki T, Kai Y, et al. (2006) Overexpression of peroxisome proliferator-activated receptor gamma co-activator-1alpha leads to muscle atrophy with depletion of ATP. Am J Pathol 169: 1129–1139. doi: 10.2353/ajpath.2006.060034
[20]  Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, et al. (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451: 1008–1012. doi: 10.1038/nature06613
[21]  Calvo JA, Daniels TG, Wang X, Paul A, Lin J, et al. (2008) Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104: 1304–1312. doi: 10.1152/japplphysiol.01231.2007
[22]  Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA (2004) Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr 134: 1583S–1587S.
[23]  Shimomura Y, Obayashi M, Murakami T, Harris RA (2001) Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase. Curr Opin Clin Nutr Metab Care 4: 419–423. doi: 10.1097/00075197-200109000-00013
[24]  Shimomura Y, Honda T, Shiraki M, Murakami T, Sato J, et al. (2006) Branched-chain amino acid catabolism in exercise and liver disease. J Nutr 136: 250S–253S.
[25]  Takahashi M, Kamei Y, Ehara T, Yuan X, Suganami T, et al. (2013) Analysis of DNA methylation change induced by Dnmt3b in mouse hepatocytes. Biochem Biophys Res Commun 434: 873–878. doi: 10.1016/j.bbrc.2013.04.041
[26]  Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211
[27]  Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, et al. (2010) ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26: 2438–2444. doi: 10.1093/bioinformatics/btq466
[28]  Misawa K, Nosaka T, Morita S, Kaneko A, Nakahata T, et al. (2000) A method to identify cDNAs based on localization of green fluorescent protein fusion products. Proc Natl Acad Sci U S A 97: 3062–3066. doi: 10.1073/pnas.97.7.3062
[29]  Kobayashi R, Shimomura Y, Otsuka M, Popov KM, Harris RA (2000) Experimental hyperthyroidism causes inactivation of the branched-chain alpha-ketoacid dehydrogenase complex in rat liver. Arch Biochem Biophys 375: 55–61. doi: 10.1006/abbi.1999.1635
[30]  Shimomura Y, Fujii H, Suzuki M, Murakami T, Fujitsuka N, et al. (1995) Branched-chain alpha-keto acid dehydrogenase complex in rat skeletal muscle: regulation of the activity and gene expression by nutrition and physical exercise. J Nutr 125: 1762S–1765S.
[31]  Jeyaraj D, Scheer FA, Ripperger JA, Haldar SM, Lu Y, et al. (2012) Klf15 orchestrates circadian nitrogen homeostasis. Cell Metab 15: 311–323. doi: 10.1016/j.cmet.2012.01.020
[32]  Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, et al. (2011) Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 13: 170–182. doi: 10.1016/j.cmet.2011.01.001

Full-Text

comments powered by Disqus