All Title Author
Keywords Abstract

PLOS ONE  2014 

EphA4 Activation of c-Abl Mediates Synaptic Loss and LTP Blockade Caused by Amyloid-β Oligomers

DOI: 10.1371/journal.pone.0092309

Full-Text   Cite this paper   Add to My Lib

Abstract:

The early stages of Alzheimer's disease are characterised by impaired synaptic plasticity and synapse loss. Here, we show that amyloid-β oligomers (AβOs) activate the c-Abl kinase in dendritic spines of cultured hippocampal neurons and that c-Abl kinase activity is required for AβOs-induced synaptic loss. We also show that the EphA4 receptor tyrosine kinase is upstream of c-Abl activation by AβOs. EphA4 tyrosine phosphorylation (activation) is increased in cultured neurons and synaptoneurosomes exposed to AβOs, and in Alzheimer-transgenic mice brain. We do not detect c-Abl activation in EphA4-knockout neurons exposed to AβOs. More interestingly, we demonstrate EphA4/c-Abl activation is a key-signalling event that mediates the synaptic damage induced by AβOs. According to this results, the EphA4 antagonistic peptide KYL and c-Abl inhibitor STI prevented i) dendritic spine reduction, ii) the blocking of LTP induction and iii) neuronal apoptosis caused by AβOs. Moreover, EphA4-/- neurons or sh-EphA4-transfected neurons showed reduced synaptotoxicity by AβOs. Our results are consistent with EphA4 being a novel receptor that mediates synaptic damage induced by AβOs. EphA4/c-Abl signalling could be a relevant pathway involved in the early cognitive decline observed in Alzheimer's disease patients.

References

[1]  Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, et al. (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71: 362–381. doi: 10.1097/nen.0b013e31825018f7
[2]  Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, et al. (2004) Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44: 181–193. doi: 10.1016/j.neuron.2004.09.010
[3]  Klein WL (2013) Synaptotoxic, Amyloid-β Oligomers: A Molecular Basis for the Cause, Diagnosis, and Treatment of Alzheimer's Disease? J Alzheimers Dis 33 Suppl 1S49–S65.
[4]  Estrada LD, Zanlungo SM, Alvarez AR (2011) c-Abl tyrosine kinase signaling: a new player in AD tau pathology. Curr Alzheimer Res 6: 643–651. doi: 10.2174/156720511796717249
[5]  Bradley WD, Koleske AJ (2009) Regulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts. J Cell Sci 1: 3441–3454. doi: 10.1242/jcs.039859
[6]  Moresco E, Scheetz AJ, Bornmann WG, Koleske AJ, Fitzsimonds RM (2003) Abl Family Nonreceptor Tyrosine Kinases Modulate Short-Term Synaptic Plasticity. J Neurophysiol 89: 1678–1687. doi: 10.1152/jn.00892.2002
[7]  Koleske AJ, Gifford AM, Scott ML, Nee M, Bronson RT, et al. (1998) Essencial roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21: 1259–1272. doi: 10.1016/s0896-6273(00)80646-7
[8]  Perez De Arce K, Varela-Nallar L, Farias O, Cifuentes A, Bull P, et al. (2010) Synaptic clustering of PSD-95 is regulated by c-Abl through tyrosine phosphorylation,. J Neurosci 10: 372–378. doi: 10.1523/jneurosci.2024-09.2010
[9]  Alvarez AR, Sandoval PC, Leal NR, Castro PU, Kosik KS (2004) Activation of the neuronal c-Abl tyrosine kinase by amyloid-beta-peptide and reactive oxygen species. Neurobiol Dis 17: 326–336. doi: 10.1016/j.nbd.2004.06.007
[10]  Cancino GI, Toledo EM, Leal NR, Hernandez DE, Yévenes LF, et al. (2008) STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer's beta-amyloid deposits. Brain 131: 2425–2442. doi: 10.1093/brain/awn125
[11]  Cancino GI, Perez de Arce K, Castro PU, Toledo EM, Von Bernhardi R, et al. (2011) c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice. Neurobiol Aging 32: 1279–1261. doi: 10.1016/j.neurobiolaging.2009.07.007
[12]  Gonfloni S, Maiani E, Di Bartolomeo C, Diederich M, Cesareni G (2012) Oxidative Stress, DNA Damage, and c-Abl Signaling: At the Crossroad in Neurodegenerative Diseases? Int J Cell Biol. Epub ahead of print.
[13]  Schlatterer SD, Tremblay MA, Acker CM, Davies P (2011) Neuronal c-Abl overexpression leads to neuronal loss and neuroinflammation in the mouse forebrain. J. Alzheimers Dis 25: 119–133.
[14]  Jing Z, Caltagarone J, Bowser R (2009) Altered subcellular distribution of c-Abl in Alzheimer's disease. J Alzheimers Dis 17: 409–422.
[15]  Derkinderen P, Scales TM, Hanger DP, Leung KY, Byers HL, et al. (2005) Tyrosine 394 is phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J Neurosci 25: 6584–6593. doi: 10.1523/jneurosci.1487-05.2005
[16]  Alvarez AR, Klein A, Castro J, Cancino GI, Amigo J, et al. (2008) Imatinib therapy blocks cerebellar apoptosis and improves neurological symptoms in a mouse model of Niemann-Pick type C disease. FASEB J 22: 3617–3627. doi: 10.1096/fj.07-102715
[17]  Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, et al. (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron 79: 887–902. doi: 10.1016/j.neuron.2013.06.036
[18]  Patel AN, Jhamandas JH (2012) Neuronal receptors as targets for the action of amyloid-beta protein (Aβ) in the brain. Expert Rev Mol Med 20 14: e2. doi: 10.1017/s1462399411002134
[19]  Yu HH, Zisch AH, Dodelet VC, Pasquale EB (2001) Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor. Oncogene 20: 3995–4006. doi: 10.1038/sj.onc.1204524
[20]  Harbott LK, Nobes CD (2005) A key role for Abl family kinases in EphA receptor-mediated growth cone collapse. Mol Cell Neurosci 30: 1–11. doi: 10.1016/j.mcn.2005.05.002
[21]  Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu. Rev Neurosci 21: 309–345. doi: 10.1146/annurev.neuro.21.1.309
[22]  Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, et al. (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 27: 796–807. doi: 10.1523/jneurosci.3501-06.2007
[23]  Simón AM, de Maturana RL, Ricobaraza A, Escribano L, Schiapparelli L, et al. (2009) Early changes in hippocampal Eph receptors precede the onset of memory decline in mouse models of Alzheimer's disease. J Alzheimers Dis 17: 773–786.
[24]  Cissé M, Halabisky B, Harris J, Devidze N, Dubal DB, et al. (2011) Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469: 47–52. doi: 10.1038/nature09635
[25]  Williams C, Mehrian Shai R, Wu Y, Hsu YH, Sitzer T, et al. (2009) Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer's disease. PLoS One 4: e4936. doi: 10.1371/journal.pone.0004936
[26]  Egea J, Nissen UV, Dufour A, Sahin M, Greer P, et al. (2005) Regulation of EphA 4 kinase activity is required for a sub set of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron 47: 515–528. doi: 10.1016/j.neuron.2005.06.029
[27]  Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, et al. (2007) Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10: 67–76. doi: 10.1038/nn1811
[28]  Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6: 153–160. doi: 10.1038/nn994
[29]  Inoue E, Deguchi-Tawarada M, Togawa A, Matsui C, Arita K, et al. (2009) Synaptic activity prompts gamma-secretase-mediated cleavage of EphA4 and dendritic spine formation. J Cell Biol 185: 551–564. doi: 10.1083/jcb.200809151
[30]  Zhou L, Martinez SJ, Haber M, Jones EV, Bouvier D, et al. (2007) EphA4 signaling regulates phospholipase Cgamma1 activation, cofilin membrane association, and dendritic spine morphology. J Neurosci 27: 5127–5138. doi: 10.1523/jneurosci.1170-07.2007
[31]  Depaepe V, Suarez-Gonzalez N, Dufour A, Passante L, Gorski JA, et al. (2005) Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435: 1244–1250. doi: 10.1038/nature03651
[32]  Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1: 2406–2415. doi: 10.1038/nprot.2006.356
[33]  Noberini R, Koolpe M, Peddibhotla S, Dahl R, Su Y, et al. (2008) Small molecules can selectively inhibit ephrin binding to the EphA4 and EphA2 receptors. J Biol Chem 283: 29461–29472. doi: 10.1074/jbc.m804103200
[34]  Lamberto I, Qin H, Noberini R, Premkumar L, Bourgin C, et al. (2012) Distinctive binding of three antagonistic peptides to the ephrin-binding pocket of the EphA4 receptor. Biochem J 455: 47–56. doi: 10.1042/bj20120408
[35]  Sokolov Y, Kozak JA, Kayed R, Chanturiya A, Glabe C, et al. (2006) Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 128: 637–647. doi: 10.1085/jgp.200609533
[36]  Arimon M, Díez-Pérez I, Kogan MJ, Durany N, Giralt E, et al. (2005) Fine structure study of Abeta1-42 fibrillogenesis with atomic force microscopy. FASEB J 19: 1344–1346. doi: 10.1096/fj.04-3137fje
[37]  Araya KA, David Pessoa MC, González LG (2007) Role of cannabinoid CB1 receptors and Gi/o protein activation in the modulation of synaptosomal Na+,K+-ATPase activity by WIN55,212-2 and delta(9)-THC. Eur J Pharmacol 572: 32–39. doi: 10.1016/j.ejphar.2007.06.013
[38]  Villasana LE, Klann E, Tejada-Simon MV (2006) Rapid isolation of synaptoneurosomes and postsynaptic densities from adult mouse hippocampus. J Neurosci Methods 158: 30–36. doi: 10.1016/j.jneumeth.2006.05.008
[39]  Cerpa W, Farías GG, Godoy JA, Fuenzalida M, Bonansco C, et al. (2010) Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener 5: 3. doi: 10.1186/1750-1326-5-3
[40]  Brasher BB, Van Etten RA (2000) c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. J Biol Chem 275: 35631–35637. doi: 10.1074/jbc.m005401200
[41]  Schlatterer SD, Tremblay MA, Acker CM, Davies P (2011) c-Abl in neurodegenerative disease. J Mol Neurosci 45: 445–452. doi: 10.1007/s12031-011-9588-1
[42]  Plattner R, Kadlec L, DeMali KA, Kazlauskas A, Pendergast AM (1999) c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev 13: 2400–2411. doi: 10.1101/gad.13.18.2400
[43]  Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci 106: 12524–12529. doi: 10.1073/pnas.0903328106
[44]  Li J, Liu N, Wang Y, Wang R, Guo D, et al. (2012) Inhibition of EphA4 signaling after ischemia-reperfusion reduces apoptosis of CA1 pyramidal neurons. Neurosci Lett 518: 92–95. doi: 10.1016/j.neulet.2012.04.060
[45]  Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535–539. doi: 10.1038/416535a
[46]  Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, et al. (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27: 2866–2875. doi: 10.1523/jneurosci.4970-06.2007
[47]  Ikonomovic MD, Mizukami K, Davies P, Hamilton R, Sheffield R, et al. (1997) The loss of GluR2(3) immunoreactivity precedes neurofibrillary tangle formation in the entorhinal cortex and hippocampus of Alzheimer brains. J Neuropathol Exp Neurol 56: 1018–1027. doi: 10.1097/00005072-199709000-00007
[48]  Zhao WQ, Santini F, Breese R, Ross D, Zhang XD, et al. (2010) Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazo?lepropionicacid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. J Biol Chem 285: 7619–7632. doi: 10.1074/jbc.m109.057182
[49]  Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457: 1128–1132. doi: 10.1038/nature07761
[50]  Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, et al. (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci U S A 107: 2295–2300. doi: 10.1073/pnas.0911829107
[51]  De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, et al. (2009) Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A 106: 1971–1976. doi: 10.1073/pnas.0809158106
[52]  Beazely MA, Weerapura M, MacDonald JF (2008) Abelson tyrosine kinase links PDGFbeta receptor activation to cytoskeletal regulation of NMDA receptors in CA1 hippocampal neurons. Mol Brain 1: 20. doi: 10.1186/1756-6606-1-20
[53]  Genua M, Pandini G, Cassarino MF, Messina RL, Frasca F (2009) c-Abl and insulin receptor signalling. Vitam Horm 80: 77–105. doi: 10.1016/s0083-6729(08)00604-3
[54]  Fu AK, Hung KW, Fu WY, Shen C, Chen Y, et al. (2011) APC (Cdh1) mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat Neurosci 14: 181–189. doi: 10.1038/nn.2715
[55]  Filosa A, Paix?o S, Honsek SD, Carmona MA, Becker L, et al. (2009) Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 10: 1285–1292. doi: 10.1038/nn.2394
[56]  Clifford MA, Kanwal JK, Dzakpasu R, Donoghue MJ (2011) EphA4 expression promotes network activity and spine maturation in cortical neuronal cultures. Neural Dev 4: 6–21. doi: 10.1186/1749-8104-6-21
[57]  Chen Y, Fu AK, Ip NY (2012) Eph receptors at synapses: implications in neurodegenerative diseases. Cell Signal 24: 606–611. doi: 10.1016/j.cellsig.2011.11.016
[58]  Peng YR, Hou ZH, Yu X (2013) The kinase activity of EphA4 mediates homeostatic scaling-down of synaptic strength via activation of Cdk5. Neuropharmacology 65: 232–243. doi: 10.1016/j.neuropharm.2012.10.012
[59]  Sahin M, Greer PL, Lin MZ, Poucher H, Eberhart J, et al. (2005) Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46: 191–204. doi: 10.1016/j.neuron.2005.01.030
[60]  Bourgin C, Murai KK, Richter M, Pasquale EB (2007) The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol 178: 1295–1307. doi: 10.1083/jcb.200610139
[61]  Cesa R, Premoselli F, Renna A, Ethell IM, Pasquale EB, et al. (2001) Eph receptors are involved in the activity-dependent synaptic wiring in the mouse cerebellar cortex. PLoS One 6: e19160. doi: 10.1371/journal.pone.0019160
[62]  Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192: 106–113. doi: 10.1016/j.bbr.2008.02.016
[63]  Bittner T, Burgold S, Dorostkar MM, Fuhrmann M, Wegenast-Braun BM, et al. (2012) Amyloid plaque formation precedes dendritic spine loss. Acta Neuropathol 124: 797–807. doi: 10.1007/s00401-012-1047-8
[64]  Tsai J, Grutzendler J, Duff K, Gan WB (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7: 1181–1183. doi: 10.1038/nn1335
[65]  Xu Q, Mellitzer G, Wilkinson DG (2000) Roles of Eph receptors and ephrins in segmental patterning. Philos Trans R Soc Lond B Biol Sci 355: 993–1002. doi: 10.1098/rstb.2000.0635
[66]  Shen L, Kim S, Risacher SL, Nho K, Swaminathan S, et al. (2010) Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. Neuroimage 53: 1051–1063. doi: 10.1016/j.neuroimage.2010.01.042
[67]  Goldshmit Y, Spanevello MD, Tajouri S, Li L, Rogers F, et al. (2011) EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS One 6: e24636. doi: 10.1371/journal.pone.0024636
[68]  Van Hoecke A, Schoonaert L, Lemmens R, Timmers M, Staats KA, et al. (2012) EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat Med 18: 1418–1422. doi: 10.1038/nm.2901
[69]  Spanevello MD, Tajouri SI, Mirciov C, Kurniawan N, Pearse MJ, et al. (2013) Acute Delivery of EphA4-Fc Improves Functional Recovery after Contusive Spinal Cord Injury in Rats. J Neurotrauma 30: 1023–1034. doi: 10.1089/neu.2012.2729
[70]  Munro KM, Dixon KJ, Gresle MM, Jonas A, Kemper D, et al. (2013) EphA4 receptor tyrosine kinase is a modulator of onset and disease severity of experimental autoimmune encephalomyelitis (EAE). PLoS One 8: e55948. doi: 10.1371/journal.pone.0055948
[71]  Moresco EM (2003) Regulation of neuronal morphogenesis and synaptic function by Abl family kinases. Curr Opin Neurobiol 13: 535–544. doi: 10.1016/j.conb.2003.08.002

Full-Text

comments powered by Disqus