All Title Author
Keywords Abstract

PLOS ONE  2014 

Genetic Diversity and Distribution Patterns of Host Insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau

DOI: 10.1371/journal.pone.0092293

Full-Text   Cite this paper   Add to My Lib

Abstract:

The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, P<0.05) was revealed for the monophyletic host insects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable information to guide the protection and sustainable use of these host insects as well as O. sinensis.

References

[1]  Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, et al. (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57: 5–59. doi: 10.3114/sim.2007.57.01
[2]  Shimitsu D (1978) Green Book 51, Cordyceps. Japan: New Science Company.
[3]  Zhu JS, Halpern GM, Jones K (1998) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis part I. J Altern Complem Med 4: 289–303. doi: 10.1089/acm.1998.4.3-289
[4]  The State Pharmacopoeia Commission of PR China (2010) Pharmacopoeia of the People's Republic of China, vol. 1. China Medical Science Press, Beijing, pp. 224–225.
[5]  Chu HF, Wang LY, Han HX (2004) Fauna Sinica, volume 38, Lepidoptera: Hepialidae, Epiplemidae. Science Press, Beijing, pp. 291.
[6]  Wang XL, Yao YJ (2011) Host insect species of Ophiocordyceps sinensis: a review. ZooKeys 127: 43–59. doi: 10.3897/zookeys.127.802
[7]  Buenz EJ, Bauer BA, Osmundson TW, Motley TJ (2005) The traditional Chinese medicine Cordyceps sinensis and its effects on apoptotic homeostasis. J Ethnopharmacol 96: 19–29. doi: 10.1016/j.jep.2004.09.029
[8]  Wang GD (1995) Cordyceps species: ecology, cultivation and application. Science and Technology Reference Press, Beijing, pp. 307.
[9]  Yao YJ (2004) Conservation and rational use of the natural resources of Cordyceps sinensis. Sci News 15: 28–29.
[10]  Zhu HY, Mou JL (2006) Removal of chongcao at the source of the three rivers: A craze out of control. In Crisis and Break through of China's Environment, pp. 291–298. Edited by Social Sciences Academic Press, Beijing, China.
[11]  Yang DR, Li CD, Shu C, Yang YX (1996) Studies on the Chinese species of the genus Hepialus and their geographical distribution. Acta Entomologica Sinica 39: 413–422.
[12]  Li SP, Tsim KWK (2004) The biological and pharmacological properties of Cordyceps sinensis, a traditional Chinese medicine that has broad clinical applications. In: Herbal and Traditional Medicine: Molecular Aspects of Health, pp.657–686. Edited by CRC Press.
[13]  Liu F, Wu XL, Yin DH, Chen SJ, Zeng W (2005) Overview in biological studies of host insects of Cordyceps sinensis. Chongqing Journal Research on Chinese Drugs and Herbs 51: 45–52.
[14]  Li YL, Xu CT, He LJ (2007) Biological characteristics of Yushu host Hepialus larvae of Ophiocordyceps sinensis. Entomological Knowledge 44: 285–288.
[15]  Zou ZW, Liu X, Zhang GR (2010) Revision of taxonomic system of the genus Hepialus (Lepidoptera, Hepialidae) currently adopted in China. Journal of Hunan University of Science & Technology (Natural Science Edition) 25: 114–120.
[16]  Yang P (2005) The main environmental effect of Qinghai-Tibet Plateau uplift. Qinghai Environment 3: 93–95.
[17]  Yuan Y (2012) Review on regional climate change induced by Qinghai-Tibet Plateau uplift. Journal of Anhui Agricultural Sciences 40: 9815–9818.
[18]  Yang FS, Qin AL, Li YF, Wang XQ (2012) Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau. PLOS ONE 7: e37196. doi: 10.1371/journal.pone.0037196
[19]  Zhang TC, Comes HP, Sun H (2011) Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino–Himalayan region and its correlation with historical river capture events. Mol Phylogenet Evol 60: 1–12. doi: 10.1016/j.ympev.2011.04.009
[20]  Wang B, Mao JF, Gao J, Zhao W, Wang XR (2011) Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata. Mol Ecol 20: 3796–3811. doi: 10.1111/j.1365-294x.2011.05157.x
[21]  Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Mol Phylogenet Evol 59: 225–244. doi: 10.1016/j.ympev.2011.01.012
[22]  Zhan XJ, Zheng YF, Wei FW, Bruford MW, Jia CX (2011) Molecular evidence for Pleistocene refugia at the eastern edge of the Tibetan Plateau. Mol Ecol 20: 3014–3026. doi: 10.1111/j.1365-294x.2011.05144.x
[23]  Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies as indicator groups. Philos T Roy Soc B 360: 339–357. doi: 10.1098/rstb.2004.1585
[24]  Cheng Z, Geng Y, Liang HH, Yang XL, Li S, et al. (2007) Phylogenetic relationships of host insects of Cordyceps sinensis inferred from mitochondrial cytochrome b sequences. Prog Nat Sci 17: 789–797. doi: 10.1080/10002007088537474
[25]  Quan QM, Wang QX, Zhou XL, Li S, Yang XL, et al. (2014) Comparative phylogenetic relationships and genetic structure of the caterpillar fungus Ophiocordyceps sinensis and its host insects inferred from multiple gene sequences. J Microbiol 52: 99–105. doi: 10.1007/s12275-014-3391-y
[26]  Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. P Roy Soc B-Biol Sci 270: S96–99. doi: 10.1098/rsbl.2003.0025
[27]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[28]  Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187
[29]  Nylander J (2008) MrModeltest2 v. 2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala, Sweden.
[30]  Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods) 4.0b10. Sunderland, Massachusetts, USA: Sinauer Associates.
[31]  Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. doi: 10.1093/bioinformatics/17.8.754
[32]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
[33]  Bandelt HJ, Forster P, R?hl A (1999) Median–joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48. doi: 10.1093/oxfordjournals.molbev.a026036
[34]  Masters BC, Fan V, Ross HA (2011) Species delimitation—a geneious plugin for the exploration of species boundaries. Mol Ecol Resour 11: 154–157. doi: 10.1111/j.1755-0998.2010.02896.x
[35]  Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, et al. (2010) Geneious. Version 4.8.4. Software Available: http://www.geneious.com/.
[36]  Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversity I. Haploid locus. Theor Appl Genet 90: 462–470. doi: 10.1007/bf00221991
[37]  Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144: 1237–1245.
[38]  Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1: 47–50.
[39]  Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
[40]  Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133: 693–709.
[41]  Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.
[42]  Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13: 853–864. doi: 10.1046/j.1365-294x.2003.02004.x
[43]  Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 555–562.
[44]  Zakharov EV, Caterino MS, Sperling FA (2004) Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst Biol 53: 193–215.
[45]  Rogers AR (1995) Genetic evidence for a Pleistocene population expansion. Evolution 49: 608–615. doi: 10.2307/2410314
[46]  Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9: 552–569.
[47]  Yuan BY, Chen KZ, Bowler JM, Ye SJ (1990) The formation and evolution of the Qinghai Lake. Quaternary Science 3: 233–243.
[48]  Madsen DB, Ma HZ, Rhode D, Brantingham PJ, Forman SL (2008) Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau. Quaternary Res 69: 316–325. doi: 10.1016/j.yqres.2007.10.013
[49]  Qi WL, Guo LY (2007) The analysis of the effects of climate change on ecological environment around the Qinghai Lake. Prataculture and Animal Husbandry 7: 33–43.
[50]  Zhang Q, Chiang TY, George M, Liu JQ, Abbott RJ (2005) Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Mol Ecol 14: 3513–3524. doi: 10.1111/j.1365-294x.2005.02677.x
[51]  Chen SY, Wu GL, Zhang DJ, Gao QB, Duan YZ, et al. (2008) Potential refugium on the Qinghai–Tibet Plateau revealed by the chloroplast DNA phylogeography of the alpine species Metagentiana striata (Gentianaceae). Bot J Linn Soc 157: 125–140. doi: 10.1111/j.1095-8339.2008.00785.x
[52]  Yang FS, Li YF, Ding X, Wang XQ (2008) Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change. Mol Ecol 17: 5135–5145. doi: 10.1111/j.1365-294x.2008.03976.x
[53]  Zeng LY, Xu LL, Tang SQ, Tersing T, Geng YP, et al. (2010) Effect of sampling strategy on estimation of fine-scale spatial genetic structure in Androsace tapete (Primulaceae), an alpine plant endemic to Qinghai–Tibetan Plateau. J Syst Evol 48: 257–264. doi: 10.1111/j.1759-6831.2010.00084.x
[54]  Avise JC (2004) Molecular Markers, Natural History and Evolution, Second Edition. Cambridge: Harvard University Press.
[55]  Ge XJ, Chiang YC, Chou CH, Chiang TY (2002) Nested clade analysis of Dunnia sinensis (Rubiaceae), a monotypic genus from China based on organelle DNA sequences. Conserv Genet 3: 351–362.
[56]  Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos T Roy Soc B 359: 183–195. doi: 10.1098/rstb.2003.1388
[57]  Newton AC, Allnutt AR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14: 140–145. doi: 10.1016/s0169-5347(98)01555-9
[58]  Chen ST, Xing YW, Su T, Zhou ZK, L Dilcher ED, et al. (2012) Phylogeographic analysis reveals significant spatial genetic structure of Incarvillea sinensis as a product of mountain building. BMC Plant Biol 12: 1–12. doi: 10.1186/1471-2229-12-58
[59]  Wang CS, Zhao XX, Liu ZF, Lippert PC, Graham SA, et al. (2008) Constraints on the early uplift history of the Tibetan Plateau. P Natl Acad Sci USA 105: 4987–4992. doi: 10.1073/pnas.0703595105
[60]  Li JJ, Fang XM (1998) Research on the uplift of the Qinghai-Xizang Plateau and environmental changes. Chinese Sci Bull 43: 1569–1574.
[61]  An ZS, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411: 62–66.
[62]  Suzuki H, Sato JJ, Tsuchiya K, Luo J, Zhang YP, et al. (2003) Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia. Biol J Linn Soc 80: 469–481. doi: 10.1046/j.1095-8312.2003.00253.x
[63]  Yang SJ, Dong HL, Lei FM (2009) Phylogeography of regional fauna on the Tibetan Plateau: A review. Prog Nat Sci 19: 789–799. doi: 10.1016/j.pnsc.2008.10.006
[64]  Shi YF, Li JJ, Li BY (1998) Uplift and environmental changes of Qinghai–Tibetan Plateau in the late Cenozoic. Guangzhou: Guangdong Science and Technology Press.
[65]  Meng LH, Yang R, Abbott RJ, Miehe G, Hu TH, et al. (2007) Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai–Tibetan Plateau and adjacent highlands. Mol Ecol 16: 4128–4137. doi: 10.1111/j.1365-294x.2007.03459.x
[66]  Qiang XK, Li ZX, Powell CM, Zheng HB (2001) Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon and Pliocene uplift of northern Tibet. Earth Planet Sc Lett 187: 83–93. doi: 10.1016/s0012-821x(01)00281-3
[67]  Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL (1989) The sensitivity of climate to late Cenozoic uplift in Southern Asia and the American west: Numerical experiments. J Geophys Res 94: 18393–18407. doi: 10.1029/jd094id15p18393
[68]  Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate change. Nature 359: 117–122. doi: 10.1038/359117a0
[69]  Shi YF, Li JJ, Li BY, Yao TD, Wang SM, et al. (1999) Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during late Cenozoic. Acta Geographica Sinica 54: 10–21.
[70]  Chen WY (1980) The nature environment of Nyingchi Prefecture in Tibet in Late Cenozoic. Vertebrata Palasiatica 1: 52–58.
[71]  Liang HH, Cheng Z, Yang XL, Li S, Ding ZQ, et al. (2008) Genetic diversity and structure of Cordyceps sinensis populations from extensive geographical regions in China as revealed by ISSR markers. J Microbiol 46: 549–556. doi: 10.1007/s12275-008-0107-1
[72]  Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Ann Mo Bot Gard 77: 13–27. doi: 10.2307/2399621
[73]  Young A, Boyle T, Brown A (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11: 413–418. doi: 10.1016/0169-5347(96)10045-8
[74]  Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34: 487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419
[75]  Shi YF (2002) Characteristics of late Quaternary monsoonal glaciation on the Tibetan plateau and in East Asia. Quatern Int 97–98: 79–91. doi: 10.1016/s1040-6182(02)00053-8
[76]  Zheng BX, Xu QQ, Shen YP (2002) The relationship between climate change and Quaternary glacial cycles on the Qinghai–Tibetan plateau: review and speculation. Quatern Int 97–98: 93–101. doi: 10.1016/s1040-6182(02)00054-x
[77]  Zhuo Z, Yuan BY, Petit-Maire N (1998) Paleoenvironments in China during the Last Glacial Maximum and the Holocene optimum. Episodes 21: 152–158.
[78]  Zhang DF, Fengquan L, Jianmin B (2000) Eco-environmental effects of the Qinghai–Tibet plateau uplift during the Quaternary in China. Environ Geol 39: 1352–1358. doi: 10.1007/s002540000174
[79]  Falk DA, Holsinger KE (1991) Genetics and Conservation of Rare Plants. New York: Oxford University Press.
[80]  Huenneke LF (1991) Genetics and Conservation of Rare Plants. In: Ecological implications of genetic variation in plant populations, eds: Falk DA and Holsinger KE, New York: Oxford University Press. pp.31–44.

Full-Text

comments powered by Disqus