All Title Author
Keywords Abstract

PLOS ONE  2014 

Reperfusion Promotes Mitochondrial Biogenesis following Focal Cerebral Ischemia in Rats

DOI: 10.1371/journal.pone.0092443

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background and Purpose Reperfusion after transient cerebral ischemia causes severe damage to mitochondria; however, little is known regarding the continuous change in mitochondrial biogenesis during reperfusion. Mitochondrial biogenesis causes an increase in the individual mitochondrial mass of neurons and maintains their aerobic set-point in the face of declining function. The aim of this study was to examine mitochondrial biogenesis in the cortex during reperfusion following focal cerebral ischemia. Methods Male Wistar rats were subjected to transient focal cerebral ischemia. The relative amount of cortical mitochondrial DNA was analyzed using quantitative real-time PCR at 0 h, 24 h, 72 h, and 7 d after reperfusion. Three critical transcriptional regulators of mitochondrial biogenesis were measured by semi-quantitative reverse-transcription PCR. The protein expression of cytochrome C oxidase subunits I and IV was detected by Western blotting. Results Evidence of increased mitochondrial biogenesis was observed after reperfusion. The cortical mitochondrial DNA content increased after 24 h, peaked after 72 h, and maintained a high level for 7 d. The cortical expression of three critical genes for the transcriptional regulation of mitochondrial biogenesis, namely, peroxisome proliferator-activated receptor coactivator-1α, nuclear respiratory factor-1, and mitochondrial transcription factor A, also increased at 24 h and 72 h. The expression of peroxisome proliferator-activated receptor coactivator-1α returned to the baseline level at 7 d, but two other factors maintained higher levels compared with the controls. Moreover, the expression of cytochrome C oxidase subunits I and IV was increased in the cortex. Conclusions These results indicate that reperfusion increased mitochondrial biogenesis following focal cerebral ischemia, and this tendency was exacerbated as the reperfusion time was extended. Reperfusion-induced mitochondrial biogenesis was mediated through up-regulation of critical transcriptional regulators of mitochondrial biogenesis.

References

[1]  Fiskum G (2000) Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma 17: 843–855. doi: 10.1089/neu.2000.17.843
[2]  Achanta G, Sasaki R, Feng L, Carew JS, Lu W, et al. (2005) Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA pol gamma. EMBO J 24: 3482–3492. doi: 10.1038/sj.emboj.7600819
[3]  Lin TK, Liou CW, Chen SD, Chuang YC, Tiao MM, et al. (2009) Mitochondrial dysfunction and biogenesis in the pathogenesis of parkinson’s disease. Chang Gung Med J 32: 589–599.
[4]  Wang X, Su B, Zheng L, Perry G, Smith MA, et al. (2009) The role of abnormal mitochondrial dynamics in the pathogenesis of alzheimer’s disease. J Neurochem 109 Suppl 1153–159. doi: 10.1111/j.1471-4159.2009.05867.x
[5]  Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, et al. (2010) Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta 1802: 228–234. doi: 10.1016/j.bbadis.2009.07.014
[6]  Zaidan E, Sims NR (1997) Reduced activity of the pyruvate dehydrogenase complex but not cytochrome c oxidase is associated with neuronal loss in the striatum following short-term forebrain ischemia. Brain Res 772: 23–28. doi: 10.1016/s0006-8993(97)00833-0
[7]  Canevari L, Kuroda S, Bates TE, Clark JB, Siesjo BK (1997) Activity of mitochondrial respiratory chain enzymes after transient focal ischemia in the rat. J Cereb Blood Flow Metab 17: 1166–1169. doi: 10.1097/00004647-199711000-00005
[8]  Chen SD, Yang DI, Lin TK, Shaw FZ, Liou CW, et al. (2011) Roles of oxidative stress, apoptosis, pgc-1alpha and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12: 7199–7215. doi: 10.3390/ijms12107199
[9]  Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: Demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 17: 1048–1056. doi: 10.1097/00004647-199710000-00006
[10]  Pundik S, Xu K, Sundararajan S (2012) Reperfusion brain injury: Focus on cellular bioenergetics. Neurology 79: S44–51. doi: 10.1212/wnl.0b013e3182695a14
[11]  Jones AW, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G (2012) Pgc-1 family coactivators and cell fate: Roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion 12: 86–99. doi: 10.1016/j.mito.2011.09.009
[12]  Li J, Ma X, Yu W, Lou Z, Mu D, et al. (2012) Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats. PLoS One 7: e46498. doi: 10.1371/journal.pone.0046498
[13]  Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4: 289–333. doi: 10.1146/annurev.cb.04.110188.001445
[14]  Diaz F, Moraes CT (2008) Mitochondrial biogenesis and turnover. Cell Calcium 44: 24–35. doi: 10.1016/j.ceca.2007.12.004
[15]  Kleiner S, Nguyen-Tran V, Bare O, Huang X, Spiegelman B, et al. (2009) Ppar{delta} agonism activates fatty acid oxidation via pgc-1{alpha} but does not increase mitochondrial gene expression and function. J Biol Chem 284: 18624–18633. doi: 10.1074/jbc.m109.008797
[16]  St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, et al. (2006) Suppression of reactive oxygen species and neurodegeneration by the pgc-1 transcriptional coactivators. Cell 127: 397–408. doi: 10.1016/j.cell.2006.09.024
[17]  Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576: 1–14. doi: 10.1016/s0167-4781(02)00343-3
[18]  Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18: 357–368. doi: 10.1101/gad.1177604
[19]  Escriva H, Rodriguez-Pena A, Vallejo CG (1999) Expression of mitochondrial genes and of the transcription factors involved in the biogenesis of mitochondria tfam, nrf-1 and nrf-2, in rat liver, testis and brain. Biochimie 81: 965–971. doi: 10.1016/s0300-9084(99)00223-0
[20]  Lee HM, Greeley GH Jr, Englander EW (2008) Sustained hypoxia modulates mitochondrial DNA content in the neonatal rat brain. Free Radic Biol Med 44: 807–814. doi: 10.1016/j.freeradbiomed.2007.11.005
[21]  Yin W, Signore AP, Iwai M, Cao G, Gao Y, et al. (2008) Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 39: 3057–306. doi: 10.1161/strokeaha.108.520114
[22]  Shimamura N, Matchett G, Tsubokawa T, Ohkuma H, Zhang J (2006) Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. J Neurosci Methods 156: 161–165. doi: 10.1016/j.jneumeth.2006.02.017
[23]  Edwards JL, Quattrini A, Lentz SI, Figueroa-Romero C, Cerri F, et al. (2010) Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53: 160–169. doi: 10.1007/s00125-009-1553-y
[24]  Anderson MF, Sims NR (1999) Mitochondrial respiratory function and cell death in focal cerebral ischemia. J Neurochem 73: 1189–1199. doi: 10.1046/j.1471-4159.1999.0731189.x
[25]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[26]  Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, et al. (2004) Mitochondrial biogenesis by no yields functionally active mitochondria in mammals. Proc Natl Acad Sci U S A 101: 16507–16512. doi: 10.1073/pnas.0405432101
[27]  Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, et al. (2005) Hsp70 overexpression sequesters aif and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25: 899–910. doi: 10.1038/sj.jcbfm.9600080
[28]  Kao TK, Ou YC, Kuo JS, Chen WY, Liao SL, et al. (2006) Neuroprotection by tetramethylpyrazine against ischemic brain injury in rats. Neurochem Int 48: 166–176. doi: 10.1016/j.neuint.2005.10.008
[29]  Yin W, Cao G, Johnnides MJ, Signore AP, Luo Y, et al. (2006) Tat-mediated delivery of bcl-xl protein is neuroprotective against neonatal hypoxic-ischemic brain injury via inhibition of caspases and aif. Neurobiol Dis 21: 358–371. doi: 10.1016/j.nbd.2005.07.015
[30]  Yaffe MP (1999) Dynamic mitochondria. Nat Cell Biol 1: E149–150. doi: 10.1038/14101
[31]  Nagata T (2006) Electron microscopic radioautographic study on protein synthesis in hepatocyte mitochondria of aging mice. ScientificWorldJournal 6: 1583–1598. doi: 10.1100/tsw.2006.265
[32]  Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE (2005) Mitochondrial permeability transition in CNS trauma: Cause or effect of neuronal cell death? J Neurosci Res 79: 231–239. doi: 10.1002/jnr.20292
[33]  Mandemakers W, Morais VA, De Strooper B (2007) A cell biological perspective on mitochondrial dysfunction in parkinson disease and other neurodegenerative diseases. J Cell Sci 120: 1707–1716. doi: 10.1242/jcs.03443
[34]  Ferrer I (2009) Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in alzheimer’s disease. J Bioenerg Biomembr 41: 425–431. doi: 10.1007/s10863-009-9243-5
[35]  Chan PH (2004) Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res 29: 1943–1949. doi: 10.1007/s11064-004-6869-x
[36]  Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, et al. (2005) Cyclophilin d is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102: 12005–12010. doi: 10.1073/pnas.0505294102
[37]  Valerio A, Bertolotti P, Delbarba A, Perego C, Dossena M, et al. (2011) Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ros production. J Neurochem 116: 1148–1159. doi: 10.1111/j.1471-4159.2011.07171.x
[38]  Peinado MA, Quesada A, Pedrosa JA, Martinez M, Esteban FJ, et al. (1997) Light microscopic quantification of morphological changes during aging in neurons and glia of the rat parietal cortex. Anat Rec 247: 420–425. doi: 10.1002/(sici)1097-0185(199703)247:3<420::aid-ar14>3.3.co;2-o
[39]  Mattingly KA, Ivanova MM, Riggs KA, Wickramasinghe NS, Barch MJ, et al. (2008) Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol 22: 609–622. doi: 10.1210/me.2007-0029
[40]  Chen H, Hu CJ, He YY, Yang DI, Xu J, et al. (2001) Reduction and restoration of mitochondrial dna content after focal cerebral ischemia/reperfusion. Stroke 32: 2382–2387. doi: 10.1161/hs1001.097099
[41]  Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71: 177–203. doi: 10.1146/annurev.physiol.010908.163119
[42]  Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235: 576–580. doi: 10.1126/science.3027892
[43]  Poyton RO, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65: 563–607. doi: 10.1146/annurev.bi.65.070196.003023
[44]  Cannino G, Di Liegro CM, Rinaldi AM (2007) Nuclear-mitochondrial interaction. Mitochondrion 7: 359–366. doi: 10.1016/j.mito.2007.07.001
[45]  Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, et al. (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator pgc-1. Cell 98: 115–124. doi: 10.1016/s0092-8674(00)80611-x
[46]  Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100: 7111–7116. doi: 10.1073/pnas.1232352100
[47]  Chen SD, Lin TK, Lin JW, Yang DI, Lee SY, et al. (2010) Activation of calcium/calmodulin-dependent protein kinase iv and peroxisome proliferator-activated receptor gamma coactivator-1alpha signaling pathway protects against neuronal injury and promotes mitochondrial biogenesis in the hippocampal ca1 subfield after transient global ischemia. J Neurosci Res 88: 3144–3154. doi: 10.1002/jnr.22469
[48]  Jalc P, Marsala J, Jalcova H (1995) Postischemic reperfusion causes a massive calcium overload in the myelinated spinal cord fibers. Mol Chem Neuropathol 25: 143–153. doi: 10.1007/bf02960909
[49]  Garcia-Roves PM, Huss J, Holloszy JO (2006) Role of calcineurin in exercise-induced mitochondrial biogenesis. Am J Physiol Endocrinol Metab 290: E1172–1179. doi: 10.1152/ajpendo.00633.2005
[50]  Kumari S, Anderson L, Farmer S, Mehta SL, Li PA (2012) Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Transl Stroke Res 3: 296–304. doi: 10.1007/s12975-012-0158-9
[51]  Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, et al. (2004) Mitochondrial transcription factor a regulates mtdna copy number in mammals. Hum Mol Genet 13: 935–944. doi: 10.1093/hmg/ddh109
[52]  Kutik S, Stroud DA, Wiedemann N, Pfanner N (2009) Evolution of mitochondrial protein biogenesis. Biochim Biophys Acta 1790: 409–415. doi: 10.1016/j.bbagen.2009.04.004
[53]  Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, et al. (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18: 190–198. doi: 10.1016/j.tem.2007.04.004
[54]  Lee HC, Wei YH (2005) Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37: 822–834. doi: 10.1016/j.biocel.2004.09.010
[55]  Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, et al. (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A. 103: 1768–1773. doi: 10.1073/pnas.0510452103
[56]  Villa RF, Benzi G, Curti D (1981) The effect of ischemia and pharmacological treatment evaluated on synaptosomes and purified mitochondria from rat cerebral cortex. Biochem Pharmacol 30: 2399–2408. doi: 10.1016/0006-2952(81)90333-6
[57]  Villa RF, Gorini A, Ferrari F, Hoyer S (2013) Energy metabolism of cerebral mitochondria during aging, ischemia and post-ischemic recovery assessed by functional proteomics of enzymes. Neurochem Int 63: 765–781. doi: 10.1016/j.neuint.2013.10.004
[58]  Villa RF, Gorini A, Hoyer S (2006) Differentiated effect of ageing on the enzymes of krebs’ cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex. J Neural Transm 113: 1659–1670. doi: 10.1007/s00702-006-0569-4
[59]  Zhang Q, Wu Y, Zhang P, Sha H, Jia J, et al. (2012) Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience 205: 10–17. doi: 10.1016/j.neuroscience.2011.12.053
[60]  Hota KB, Hota SK, Chaurasia OP, Singh SB (2012) Acetyl-l-carnitine-mediated neuroprotection during hypoxia is attributed to erk1/2-nrf2-regulated mitochondrial biosynthesis. Hippocampus 22: 723–736. doi: 10.1002/hipo.20934

Full-Text

comments powered by Disqus