All Title Author
Keywords Abstract

PLOS ONE  2014 

Phenotypic and Genotypic Characteristics of Novel Mouse Cell Line (NIH/3T3)-Adapted Human Enterovirus 71 Strains (EV71:TLLm and EV71:TLLmv)

DOI: 10.1371/journal.pone.0092719

Full-Text   Cite this paper   Add to My Lib


Since its identification in 1969, Enterovirus 71 (EV71) has been causing periodic outbreaks of infection in children worldwide and most prominently in the Asia-Pacific Region. Understanding the pathogenesis of Enterovirus 71 (EV71) is hampered by the virus’s inability to infect small animals and replicate in their derived in vitro cultured cells. This manuscript describes the phenotypic and genotypic characteristics of two selected EV71 strains (EV71:TLLm and EV71:TLLmv), which have been adapted to replicate in mouse-derived NIH/3T3 cells, in contrast to the original parental virus which is only able to replicate in primate cell lines. The EV71:TLLm strain exhibited productive infection in all primate and rodent cell lines tested, while EV71:TLLmv exhibited greater preference for mouse cell lines. EV71:TLLmv displayed higher degree of adaptation and temperature adaptability in NIH/3T3 cells than in Vero cells, suggesting much higher fitness in NIH/3T3 cells. In comparison with the parental EV71:BS strain, the adapted strains accumulated multiple adaptive mutations in the genome resulting in amino acid substitutions, most notably in the capsid-encoding region (P1) and viral RNA-dependent RNA polymerase (3D). Two mutations, E167D and L169F, were mapped to the VP1 canyon that binds the SCARB2 receptor on host cells. Another two mutations, S135T and K140I, were located in the VP2 neutralization epitope spanning amino acids 136–150. This is the first report of human EV71 with the ability to productively infect rodent cell lines in vitro.


[1]  Alexander JP, Baden L, Pallansch MA, Anderson LJ (1994) Enterovirus 71 infections and neurologic disease–United States, 1977–1991. J Infect Dis 169: 905–908. doi: 10.1093/infdis/169.4.905
[2]  Melnick JL (1996) Enteroviruses: Polioviruses, Coxsackieviruses, Echoviruses, and Newer Enteroviruses. In: Fields B N KDM, Howley P M, et al.., editor. Fields Virology. Philadelphia.: Lippincott-Raven. 655–712.
[3]  Bible JM, Iturriza-Gomara M, Megson B, Brown D, Pantelidis P, et al. (2008) Molecular epidemiology of human enterovirus 71 in the United Kingdom from 1998 to 2006. J Clin Microbiol 46: 3192–3200. doi: 10.1128/jcm.00628-08
[4]  Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T (2010) Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 9: 1097–1105. doi: 10.1016/s1474-4422(10)70209-x
[5]  Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, et al. (2010) Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10: 778–790. doi: 10.1016/s1473-3099(10)70194-8
[6]  Schmidt NJ, Lennette EH, Ho HH (1974) An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129: 304–309. doi: 10.1093/infdis/129.3.304
[7]  Blomberg J, Lycke E, Ahlfors K, Johnsson T, Wolontis S, et al. (1974) Letter: New enterovirus type associated with epidemic of aseptic meningitis and-or hand, foot, and mouth disease. Lancet 2: 112. doi: 10.1016/s0140-6736(74)91684-5
[8]  Kennett ML, Birch CJ, Lewis FA, Yung AP, Locarnini SA, et al. (1974) Enterovirus type 71 infection in Melbourne. Bull World Health Organ 51: 609–615.
[9]  Deibel R, Gross LL, Collins DN (1975) Isolation of a new enterovirus (38506). Proc Soc Exp Biol Med 148: 203–207. doi: 10.3181/00379727-148-38506
[10]  Hagiwara A, Tagaya I, Yoneyama T (1978) Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology 9: 60–63. doi: 10.1159/000148922
[11]  Chumakov M, Voroshilova M, Shindarov L, Lavrova I, Gracheva L, et al. (1979) Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol 60: 329–340. doi: 10.1007/bf01317504
[12]  Shindarov LM, Chumakov MP, Voroshilova MK, Bojinov S, Vasilenko SM, et al. (1979) Epidemiological, clinical, and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71. J Hyg Epidemiol Microbiol Immunol 23: 284–295.
[13]  Nagy G, Takátsy S, Kukán E, Mihály I, D?m?k I (1982) Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Arch Virol 71: 217–227. doi: 10.1007/bf01314873
[14]  Chonmaitree T, Menegus MA, Schervish-Swierkosz EM, Schwalenstocker E (1981) Enterovirus 71 infection: report of an outbreak with two cases of paralysis and a review of the literature. Pediatrics 67: 489–493.
[15]  Samuda GM, Chang WK, Yeung CY, Tang PS (1987) Monoplegia caused by Enterovirus 71: an outbreak in Hong Kong. Pediatr Infect Dis J 6: 206–208. doi: 10.1097/00006454-198702000-00013
[16]  Gilbert GL, Dickson KE, Waters MJ, Kennett ML, Land SA, et al. (1988) Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement. Pediatr Infect Dis J 7: 484–488. doi: 10.1097/00006454-198807000-00007
[17]  Hayward JC, Gillespie SM, Kaplan KM, Packer R, Pallansch M, et al. (1989) Outbreak of poliomyelitis-like paralysis associated with enterovirus 71. Pediatr Infect Dis J 8: 611–616. doi: 10.1097/00006454-198909000-00009
[18]  Tagaya I, Takayama R, Hagiwara A (1981) A large-scale epidemic of hand, foot and mouth disease associated with enterovirus 71 infection in Japan in 1978. Jpn J Med Sci Biol 34: 191–196. doi: 10.7883/yoken1952.34.191
[19]  Ishimaru Y, Nakano S, Yamaoka K, Takami S (1980) Outbreaks of hand, foot, and mouth disease by enterovirus 71. High incidence of complication disorders of central nervous system. Arch Dis Child 55: 583–588. doi: 10.1136/adc.55.8.583
[20]  Hagiwara A, Yoneyama T, Hashimoto I (1983) Isolation of a temperature-sensitive strain of enterovirus 71 with reduced neurovirulence for monkeys. J Gen Virol 64 (Pt 2): 499–502. doi: 10.1099/0022-1317-64-2-499
[21]  Lum LC, Wong KT, Lam SK, Chua KB, Goh AY, et al. (1998) Fatal enterovirus 71 encephalomyelitis. J Pediatr 133: 795–798. doi: 10.1016/s0022-3476(98)70155-6
[22]  Lum LC, Wong KT, Lam SK, Chua KB, Goh AY (1998) Neurogenic pulmonary oedema and enterovirus 71 encephalomyelitis. Lancet 352: 1391. doi: 10.1016/s0140-6736(05)60789-1
[23]  Chang LY, Huang YC, Lin TY (1998) Fulminant neurogenic pulmonary oedema with hand, foot, and mouth disease. Lancet 352: 367–368. doi: 10.1016/s0140-6736(98)24031-1
[24]  Yan JJ, Wang JR, Liu CC, Yang HB, Su IJ (2000) An outbreak of enterovirus 71 infection in Taiwan 1998: a comprehensive pathological, virological, and molecular study on a case of fulminant encephalitis. J Clin Virol 17: 13–22. doi: 10.1016/s1386-6532(00)00067-6
[25]  Liu CC, Tseng HW, Wang SM, Wang JR, Su IJ (2000) An outbreak of enterovirus 71 infection in Taiwan, 1998: epidemiologic and clinical manifestations. J Clin Virol 17: 23–30. doi: 10.1016/s1386-6532(00)00068-8
[26]  Wang JR, Tsai HP, Chen PF, Lai YJ, Yan JJ, et al. (2000) An outbreak of enterovirus 71 infection in Taiwan, 1998. II. Laboratory diagnosis and genetic analysis. J Clin Virol 17: 91–99. doi: 10.1016/s1386-6532(00)00079-2
[27]  China C (2008) Report on the hand, foot and mouth disease outbreak in Fuyang City, Anhui Province and the prevention and control in China. Beijing, China: Office of the World Health Organization, China.
[28]  Yang F, Zhang T, Hu Y, Wang X, Du J, et al. (2011) Survey of enterovirus infections from hand, foot and mouth disease outbreak in China, 2009. Virol J 8: 508. doi: 10.1186/1743-422x-8-508
[29]  Zeng M, El Khatib NF, Tu S, Ren P, Xu S, et al. (2012) Seroepidemiology of Enterovirus 71 infection prior to the 2011 season in children in Shanghai. J Clin Virol 53: 285–289. doi: 10.1016/j.jcv.2011.12.025
[30]  Zhang Y, Cui W, Liu L, Wang J, Zhao H, et al. (2011) Pathogenesis study of enterovirus 71 infection in rhesus monkeys. Lab Invest 91: 1337–1350. doi: 10.1038/labinvest.2011.82
[31]  Arita M, Shimizu H, Nagata N, Ami Y, Suzaki Y, et al. (2005) Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J Gen Virol 86: 1391–1401. doi: 10.1099/vir.0.80784-0
[32]  Chen P, Song Z, Qi Y, Feng X, Xu N, et al. (2012) Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J Biol Chem 287: 6406–6420. doi: 10.1074/jbc.m111.301622
[33]  Chen YC, Yu CK, Wang YF, Liu CC, Su IJ, et al. (2004) A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol 85: 69–77. doi: 10.1099/vir.0.19423-0
[34]  Chua BH, Phuektes P, Sanders SA, Nicholls PK, McMinn PC (2008) The molecular basis of mouse adaptation by human enterovirus 71. J Gen Virol 89: 1622–1632. doi: 10.1099/vir.0.83676-0
[35]  Khong WX, Yan B, Yeo H, Tan EL, Lee JJ, et al. (2012) A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol 86: 2121–2131. doi: 10.1128/jvi.06103-11
[36]  Ong KC, Badmanathan M, Devi S, Leong KL, Cardosa MJ, et al. (2008) Pathologic characterization of a murine model of human enterovirus 71 encephalomyelitis. J Neuropathol Exp Neurol 67: 532–542. doi: 10.1097/nen.0b013e31817713e7
[37]  Wang W, Duo J, Liu J, Ma C, Zhang L, et al. (2011) A mouse muscle-adapted enterovirus 71 strain with increased virulence in mice. Microbes Infect 13: 862–870. doi: 10.1016/j.micinf.2011.04.004
[38]  Wang YF, Chou CT, Lei HY, Liu CC, Wang SM, et al. (2004) A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol 78: 7916–7924. doi: 10.1128/jvi.78.15.7916-7924.2004
[39]  Yao PP, Qian L, Xia Y, Xu F, Yang ZN, et al. (2012) Enterovirus 71-induced neurological disorders in young gerbils, Meriones unguiculatus: development and application of a neurological disease model. PLoS One 7: e51996. doi: 10.1371/journal.pone.0051996
[40]  Borrego B, Novella IS, Giralt E, Andreu D, Domingo E (1993) Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. J Virol 67: 6071–6079.
[41]  Burch CL, Chao L (1999) Evolution by small steps and rugged landscapes in the RNA virus phi6. Genetics 151: 921–927.
[42]  Steinhauer DA, Domingo E, Holland JJ (1992) Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene 122: 281–288. doi: 10.1016/0378-1119(92)90216-c
[43]  Biebricher C, Eigen M (2006) What is a Quasispecies. In: Domingo E, editor. Quasispecies: Concept and Implications for Virology. Heidelberg: Springer-Verlag. 1–31.
[44]  Eigen M, Schuster P (1977) The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64: 541–565. doi: 10.1007/bf00450633
[45]  Eigen M, Biebricher C (1988) Sequence Space and Quasispecies Distribution. In: Domingo E, Holland J, Ahlquist P, editors. RNA Genetics. Boca Raton: CRC Press. 211–245.
[46]  ATCC NIH/3T3 ATCC CRL-11658.
[47]  Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, et al. (2009) Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 15: 798–801. doi: 10.1038/nm.1992
[48]  Yamayoshi S, Ohka S, Fujii K, Koike S (2013) Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J Virol 87: 3335–3347. doi: 10.1128/jvi.02070-12
[49]  Yamayoshi S, Koike S (2011) Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J Virol 85: 4937–4946. doi: 10.1128/jvi.02358-10
[50]  Zaini Z, Phuektes P, McMinn P (2012) Mouse adaptation of a sub-genogroup B5 strain of human enterovirus 71 is associated with a novel lysine to glutamic acid substitution at position 244 in protein VP1. Virus Res 167: 86–96. doi: 10.1016/j.virusres.2012.04.009
[51]  Arita M, Ami Y, Wakita T, Shimizu H (2008) Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model. J Virol 82: 1787–1797. doi: 10.1128/jvi.01798-07
[52]  Zaini Z, McMinn P (2012) A single mutation in capsid protein VP1 (Q145E) of a genogroup C4 strain of human enterovirus 71 generates a mouse-virulent phenotype. J Gen Virol 93: 1935–1940. doi: 10.1099/vir.0.043893-0
[53]  Liu CC, Chou AH, Lien SP, Lin HY, Liu SJ, et al. (2011) Identification and characterization of a cross-neutralization epitope of Enterovirus 71. Vaccine 29: 4362–4372. doi: 10.1016/j.vaccine.2011.04.010
[54]  Zaini Z, Phuektes P, McMinn P (2012) A reverse genetic study of the adaptation of human enterovirus 71 to growth in Chinese hamster ovary cell cultures. Virus Res 165: 151–156. doi: 10.1016/j.virusres.2012.02.009
[55]  Miyamura K, Nishimura Y, Abo M, Wakita T, Shimizu H (2011) Adaptive mutations in the genomes of enterovirus 71 strains following infection of mouse cells expressing human P-selectin glycoprotein ligand-1. J Gen Virol 92: 287–291. doi: 10.1099/vir.0.022418-0
[56]  Lin JY, Chen TC, Weng KF, Chang SC, Chen LL, et al. (2009) Viral and host proteins involved in picornavirus life cycle. J Biomed Sci 16: 103. doi: 10.1186/1423-0127-16-103
[57]  Eigen M (1993) The origin of genetic information: viruses as models. Gene 135: 37–47. doi: 10.1016/0378-1119(93)90047-7
[58]  Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76: 159–216. doi: 10.1128/mmbr.05023-11
[59]  Domingo E, Menéndez-Arias L, Holland JJ (1997) RNA virus fitness. Rev Med Virol 7: 87–96. doi: 10.1002/(sici)1099-1654(199707)7:2<87::aid-rmv188>;2-s
[60]  Domingo E (2002) Quasispecies theory in virology. Journal of Virology 76: 463–465. doi: 10.1128/jvi.76.1.463-465.2002
[61]  Reed L, Muench H (1938) A simple method of estimating fifty per cent endpoints. The American Journal of Hygiene 27: 493–497.
[62]  Lindenbach BD, Evans MJ, Syder AJ, W?lk B, Tellinghuisen TL, et al. (2005) Complete replication of hepatitis C virus in cell culture. Science 309: 623–626. doi: 10.1126/science.1114016
[63]  Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
[64]  Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201. doi: 10.1093/bioinformatics/bti770
[65]  Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723. doi: 10.1002/elps.1150181505


comments powered by Disqus

Contact Us


微信:OALib Journal