All Title Author
Keywords Abstract

PLOS ONE  2014 

Abnormal Behaviors and Developmental Disorder of Hippocampus in Zinc Finger Protein 521 (ZFP521) Mutant Mice

DOI: 10.1371/journal.pone.0092848

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zinc finger protein 521 (ZFP521) regulates a number of cellular processes in a wide range of tissues, such as osteoblast formation and adipose commitment and differentiation. In the field of neurobiology, it is reported to be an essential factor for transition of epiblast stem cells into neural progenitors in vitro. However, the role of ZFP521 in the brain in vivo still remains elusive. To elucidate the role of ZFP521 in the mouse brain, we generated mice lacking exon 4 of the ZFP521 gene. The birth ratio of our ZFP521Δ/Δ mice was consistent with Mendel's laws. Although ZFP521Δ/Δ pups had no apparent defect in the body and were indistinguishable from ZFP521+/+ and ZFP521+/Δ littermates at the time of birth, ZFP521Δ/Δ mice displayed significant weight reduction as they grew, and most of them died before 10 weeks of age. They displayed abnormal behavior, such as hyper-locomotion, lower anxiety and impaired learning, which correspond to the symptoms of schizophrenia. The border of the granular cell layer of the dentate gyrus in the hippocampus of the mice was indistinct and granular neurons were reduced in number. Furthermore, Sox1-positive neural progenitor cells in the dentate gyrus and cerebellum were significantly reduced in number. Taken together, these findings indicate that ZFP521 directly or indirectly affects the formation of the neuronal cell layers of the dentate gyrus in the hippocampus, and thus ZFP521Δ/Δ mice displayed schizophrenia-relevant symptoms. ZFP521Δ/Δ mice may be a useful research tool as an animal model of schizophrenia.

References

[1]  Warming S, Liu P, Suzuki T, Akagi K, Lindtner S, et al. (2003) Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Krüppel-like zinc finger protein. Blood 101: 1934–1940. doi: 10.1182/blood-2002-08-2652
[2]  Han R, Kan Q, Sun Y, Wang S, Zhang G, et al. (2012) MiR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neurosci Lett 515: 147–152. doi: 10.1016/j.neulet.2012.03.032
[3]  Mega T, Lupia M, Amodio N, Horton SJ, Mesuraca M, et al. (2011) Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors. Cell Cycle 10: 2129–2139. doi: 10.4161/cc.10.13.16045
[4]  Bond HM, Mesuraca M, Amodio N, Mega T, Agosti V, et al. (2008) Early hematopoietic zinc finger protein-zinc finger protein 521: a candidate regulator of diverse immature cells. Int J Biochem Cell Biol 40: 848–854. doi: 10.1016/j.biocel.2007.04.006
[5]  Matsubara E, Sakai I, Yamanouchi J, Fujiwara H, Yakushijin Y, et al. (2009) The role of zinc finger protein 521/early hematopoietic zinc finger protein in erythroid cell differentiation. J Biol Chem 284: 3480–3487. doi: 10.1074/jbc.m805874200
[6]  Kang S, Akerblad P, Kiviranta R, Gupta RK, Kajimura S, et al. (2012) Regulation of early adipose commitment by Zfp521. PLoS Biol 10: e1001433. doi: 10.1371/journal.pbio.1001433
[7]  Correa D, Hesse E, Seriwatanachai D, Kiviranta R, Saito H, et al. (2010) Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocyte. Dev Cell 19: 533–546. doi: 10.1016/j.devcel.2010.09.008
[8]  Hesse E, Saito H, Kiviranta R, Correa D, Yamana K, et al. (2010) Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity. J Cell Biol 191: 1271–1283. doi: 10.1083/jcb.201009107
[9]  Wu M, Hesse E, Morvan F, Zhang JP, Correa D, et al. (2009) Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone 44: 528–536. doi: 10.1016/j.bone.2008.11.011
[10]  Kamiya D, Banno S, Sasai N, Ohgushi M, Inomata H, et al. (2011) Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature 470: 503–509. doi: 10.1038/nature09726
[11]  Lobo MK, Yeh C, Yang XW (2008) Pivotal role of early B-cell factor 1 in development of striatonigral medium spiny neurons in the matrix compartment. J Neurosci Res 86: 2134–2146. doi: 10.1002/jnr.21666
[12]  Shen S, Pu J, Lang B, McCaig CD (2011) A zinc finger protein Zfp521 directs neural differentiation and beyond. Stem Cell Res Ther 2: 20. doi: 10.1186/scrt61
[13]  Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315: 1143–1147. doi: 10.1126/science.1138389
[14]  Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, et al. (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408: 39–42. doi: 10.1016/s0014-5793(97)00384-0
[15]  Barbu V, Dautry F (1989) Northern blot normalization with 28S rRNA oligonucleotide probe. Nucleic Acids Res 17: 7115. doi: 10.1093/nar/17.17.7115
[16]  Ohkubo N, Lee YD, Morishima A, Terashima T, Kikkawa S, et al. (2003) Apolipoprotein E and Reelin ligands modulate tau phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3β cascade. FASEB J 17: 295–297. doi: 10.1096/fj.02-0434fje
[17]  Gong R, Ding C, Hu J, Lu Y, Liu F, et al. (2011) Role for membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science 333: 1642–1646. doi: 10.1126/science.1207675
[18]  Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R, et al. (2006) Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci 26: 319–327. doi: 10.1523/jneurosci.2623-05.2006
[19]  Wu WL, Lin YW, Min MY, Chen CC (2010) Mice lacking Asic3 show reduced anxiety-like behavior on the elevated plus maze and reduced aggression. Genes Brain Behav 9: 603–614. doi: 10.1111/j.1601-183x.2010.00591.x
[20]  Wang R, Ma WG, Gao GD, Mao QX, Zheng J, et al. (2011) Fluoro jade-C staining in the assessment of brain injury after deep hypothermia circulatory arrest. Brain Res 1372: 127–132. doi: 10.1016/j.brainres.2010.11.059
[21]  Matsuoka Y, Furuyashiki T, Yamada K, Nagai T, Bito H, et al. (2005) Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proc Natl Acad Sci U S A 102: 16066–16071. doi: 10.1073/pnas.0504908102
[22]  Yamashita M, Sakakibara Y, Hall FS, Numachi Y, Yoshida S, et al. (2013) Impaired cliff avoidance reaction in dopamine transporter knockout mice. Psychopharmacology 227: 741–749. doi: 10.1007/s00213-013-3009-9
[23]  Koike H, Ibi D, Mizoguchi H, Nagai T, Nitta A, et al. (2009) Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behav Brain Res 202: 114–121. doi: 10.1016/j.bbr.2009.03.028
[24]  Takahashi K, Nagai T, Kamei H, Maeda K, Matsuya T, et al. (2007) Neural circuits containing pallidotegmental GABAergic neurons are involved in the prepulse inhibition of the startle reflex in mice. Biol Psychiatry 62: 148–157. doi: 10.1016/j.biopsych.2006.06.035
[25]  Rolland B, Marche K, Cottencin O, Bordet R (2012) The PPARα agonist fenofibrate reduces prepulse inhibition disruption in a neurodevelopmental model of schizophrenia. Schizophr Res Treatment 2012: 839853. doi: 10.1155/2012/839853
[26]  Jeon B, Hwang YK, Lee SY, Kim D, Chung C, et al. (2012) The role of basolateral amygdala in the regulation of stress-induced phosphorylated extracellular signal-regulated kinase expression in the hippocampus. Neuroscience 224: 191–201. doi: 10.1016/j.neuroscience.2012.08.035
[27]  Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 177: 245–255. doi: 10.1007/s00213-004-2048-7
[28]  Ohkubo N, Vitek MP, Morishima A, Suzuki Y, Miki T, et al. (2007) Reelin signals survival through Src-family kinases that inactivate BAD activity. J Neurochem 103: 820–830. doi: 10.1111/j.1471-4159.2007.04804.x
[29]  Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, et al. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3: 778–784. doi: 10.1038/ncb0901-778
[30]  Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417: 39–44. doi: 10.1038/417039a
[31]  Laywll ED, Rakic P, Kukekov VG, Holland EC, Steindler DA (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci U S A 97: 13883–13888. doi: 10.1073/pnas.250471697
[32]  Seriwatanachai D, Densmore MJ, Sato T, Correa D, Neff L, et al. (2011) Deletion of Zfp521 rescues the growth plate phenotype in a mouse model of Jansen metaphyseal chondrodysplasia. FASEB J 25: 3057–3067. doi: 10.1096/fj.11-183277
[33]  Hesse E, Kiviranta R, Wu M, Saito H, Yamana K, et al. (2010) Zinc finger protein 521, a new player in bone formation. Ann N Y Acad Sci 1192: 32–37. doi: 10.1111/j.1749-6632.2009.05347.x
[34]  Gainetdinov RR, Mohn AR, Bohn LM, Caron MG (2001) Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter. Proc Natl Acad Sci U S A 98: 11047–11054. doi: 10.1073/pnas.191353298
[35]  Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, et al. (2003) Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci U S A 100: 8987–8992. doi: 10.1073/pnas.1432926100
[36]  Braff D, Stone C, Callaway E, Geyer M, Glick I, et al. (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15: 339–343. doi: 10.1111/j.1469-8986.1978.tb01390.x
[37]  Castellanos FX, Fine EJ, Kaysen DL, Marsh WL, Rapoport JL, et al. (1996) Sensorimotor gating in boys with Tourette's syndrome and ADHD: preliminary results. Biol Psychiatry 39: 33–41. doi: 10.1016/0006-3223(95)00101-8
[38]  Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271: 787–794.
[39]  Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156: 194–215. doi: 10.1007/s002130100799
[40]  Varty GB, Higgins GA (1995) Examination of drug-induced and isolation-induced disruptions of prepulse inhibition as models to screen antipsychotic drugs. Psychopharmacology 122: 15–26. doi: 10.1007/bf02246437
[41]  Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology 174: 151–162. doi: 10.1007/s00213-003-1761-y
[42]  Schurov IL, Handford EJ, Brandon NJ, Whiting PJ (2004) Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol Pyschiatry 9: 1100–1110. doi: 10.1038/sj.mp.4001574
[43]  Reif A, Fritzen S, Finger M, Strobel A, Lauer M, et al. (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11: 514–522. doi: 10.1038/sj.mp.4001791
[44]  Balu DT, Lucki I. (2009) Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev: 33: , 232–252.
[45]  Pfeiffer V, G?tz R, Xiang C, Camarero G, Braun A, et al. (2013) Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum. PLoS One 8: e58259. doi: 10.1371/journal.pone.0058259
[46]  Kuroda K, Yamada S, Tanaka M, Iizuka M, Yano H, et al. (2011) Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum Mol Genet 20: 4666–4683. doi: 10.1093/hmg/ddr400
[47]  Kim JY, Duan X, Liu CY, Jang MH, Guo JU, et al. (2009) DISC1 regulates new neuron development in the adult via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63: 761–773. doi: 10.1016/j.neuron.2009.08.008
[48]  Tomita K, Kubo K, Ishii K, Nakajima K (2011) Disc1 is necessary for migration of the pyramidal neurons during mouse hippocampal development. Hum Mol Genet 20: 2834–2845. doi: 10.1093/hmg/ddr194
[49]  Brandon NJ, Millar JK, Korth C, Sive H, Singh KK, et al. (2009) Understanding the role of DISC1 in psychiatric disease and during normal development. J Neurosci 29: 12768–12775. doi: 10.1523/jneurosci.3355-09.2009
[50]  Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, et al. (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling. Cell 136: 1017–1031. doi: 10.1016/j.cell.2008.12.044

Full-Text

comments powered by Disqus