All Title Author
Keywords Abstract

PLOS ONE  2014 

Differential Nitrogen Cycling in Semiarid Sub-Shrubs with Contrasting Leaf Habit

DOI: 10.1371/journal.pone.0093184

Full-Text   Cite this paper   Add to My Lib


Nitrogen (N) is, after water, the most limiting resource in semiarid ecosystems. However, knowledge on the N cycling ability of semiarid woody plants is still very rudimentary. This study analyzed the seasonal change in the N concentrations and pools of the leaves and woody organs of two species of semiarid sub-shrubs with contrasting leaf habit. The ability of both species to uptake, remobilize and recycle N, plus the main storage organ for N during summer drought were evaluated. We combined an observational approach in the field with experimental 15N labelling of adult individuals grown in sand culture. Seasonal patterns of N concentrations were different between species and organs and foliar N concentrations of the summer deciduous Lepidium subulatum were almost double those of the evergreen Linum suffruticosum. L. subulatum up took ca. 60% more external N than the evergreen and it also had a higher N resorption efficiency and proficiency. Contrastingly, L. suffruticosum relied more on internal N remobilization for shoot growth. Differently to temperate species, the evergreen stored N preferentially in the main stem and old trunks, while the summer deciduous stored it in the foliage and young stems. The higher ability of L. subulatum to uptake external N can be related to its ability to perform opportunistic growth and exploit the sporadic pulses of N typical of semiarid ecosystems. Such ability may also explain its high foliar N concentrations and its preferential storage of N in leaves and young stems. Finally, L. suffruticosum had a lower ability to recycle N during leaf senescence. These strategies contrast with those of evergreen and deciduous species from temperate and boreal areas, highlighting the need of further studies on semiarid and arid plants.


[1]  Schlesinger WH (1996) Biogeochemistry: an analysis of global change. San Diego: Academic Press.
[2]  Delgado-Baquerizo M (2013) Efectos del cambio climático sobre la dinámica del nitrógeno en zonas áridas a distintas escalas espaciales. Seville: Universidad Pablo de Olavide.
[3]  Millard P, Grelet GA (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiology 30: 1083–1095. doi: 10.1093/treephys/tpq042
[4]  Millard P (1996) Ecophysiology of the internal cycling of nitrogen for tree growth. Zeitschrift fur Pflanzenernahrung und Bodenkunde 159: 1–10.
[5]  Gallardo A, Merino J (1993) Leaf Decomposition in Two Mediterranean Ecosystems of Southwest Spain: Influence of Substrate Quality. Ecology 74: 152–161. doi: 10.2307/1939510
[6]  Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, et al. (1990) Biological feedbacks in global desertification. Science 247: 1043–1048. doi: 10.1126/science.247.4946.1043
[7]  Reynolds JF, Kemp PR, Ogle K, Fernández RJ (2004) Modifying the ‘pulse-reserve’ paradigm for deserts of North America: Precipitation pulses, soil water, and plant responses. Oecologia 141: 194–210. doi: 10.1007/s00442-004-1524-4
[8]  Guerrero Campo J, Alberto F, Maestro Martínez M, Hodgson J, Montserrat Martí G (1999) Plant community patterns in a gypsum area of NE Spain. II.- Effects of ion washing on topographic distribution of vegetation. Journal of Arid Environments 41: 411–419. doi: 10.1006/jare.1999.0493
[9]  Meyer SE, García-Moya E, Lagunes-Espinoza LC (1992) Topographic and soil surface effects on gypsophile plant community patterns in central Mexico. Journal of Vegetation Science 3: 429–438. doi: 10.1111/j.1654-1103.1992.tb00353.x
[10]  Coleman GD, Chen THH, Ernst SG, Fuchigami L (1991) Photoperiod control of poplar bark storage protein accumulation. Plant Physiology 96: 686–692. doi: 10.1104/pp.96.3.686
[11]  van Cleve B, Apel K (1993) Induction by nitrogen and low temperature of storage-protein synthesis in poplar trees exposed to long days. Planta 189: 157–160. doi: 10.1007/bf00201357
[12]  Millard P, Proe MF (1991) Leaf demography and the seasonal internal cycling of nitrogen in sycamore (Acer pseudoplatanus L.) seedlings in relation to nitrogen supply. New Phytologist 117: 587–596. doi: 10.1111/j.1469-8137.1991.tb00963.x
[13]  Millard P, Thomson CM (1989) The effect of the autumn senescence of leaves on the internal cycling of nitrogen for the spring growth of apple trees. Journal of Experimental Botany 40: 1285–1289. doi: 10.1093/jxb/40.11.1285
[14]  Milla R, Castro-Diez P, Maestro-Martinez M, Montserrat-Marti G (2005) Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytologist 168: 167–178. doi: 10.1111/j.1469-8137.2005.01477.x
[15]  Palacio S, Millard P, Montserrat-Martí G (2006) Aboveground biomass allocation patterns within Mediterranean sub-shrubs: a quantitative analysis of seasonal dimorphism. Flora 201: 612–622. doi: 10.1016/j.flora.2006.02.002
[16]  Palacio S, Millard P, Maestro M, Montserrat-Martí G (2007) Non-structural carbohydrates and nitrogen dynamics in Mediterranean sub-shrubs: an analysis of the functional role of overwintering leaves. Plant Biology 9: 49–58. doi: 10.1055/s-2006-924224
[17]  Escudero A, Del Arco JM, Garrido MV (1992) The efficiency of nitrogen retranslocation from leaf biomass in Quercus ilex ecosystems. Vegetatio 100: 225–237. doi: 10.1007/bf00118229
[18]  Milla R, Maestro-Martínez M, Montserrat-Martí G (2004) Seasonal branch nutrient dynamics in two Mediterranean woody shrubs with contrasted phenology. Annals of Botany 93: 671–680.
[19]  Grelet GA, Alexander IJ, Proe MF, Frossard JS, Millard P (2001) Leaf habit influences nitrogen remobilization in Vaccinium species. Journal of Experimental Botany 52: 993–1002. doi: 10.1093/jexbot/52.358.993
[20]  Millard P, Proe MF (1992) Storage and internal cycling of nitrogen in relation to seasonal growth of Sitka spruce. Tree physiology 10: 33–43. doi: 10.1093/treephys/10.1.33
[21]  Proe MF, Midwood AJ, Craig J (2000) Use of stable isotopes to quantify nitrogen, potassium and magnesium dynamics in young Scots pine (Pinus sylvestris). New Phytologist 146: 461–469. doi: 10.1046/j.1469-8137.2000.00658.x
[22]  Vizoso S, Gerant D, Guehl JM, Joffre R, Chalot M, et al. (2008) Do elevation of CO2 concentration and nitrogen fertilization alter storage and remobilization of carbon and nitrogen in pedunculate oak saplings? Tree physiology 28: 1729–1739. doi: 10.1093/treephys/28.11.1729
[23]  Milla R, Castro-Diez P, Maestro-Martinez M, Montserrat-Marti G (2005) Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants? Plant and Soil 278: 303–313. doi: 10.1007/s11104-005-8770-z
[24]  Milla R, Castro-Díez P, Maestro-Martínez M, Montserrat-Martí G (2005) Environmental constraits on phenology and internal cycling in the Mediterranean winter-deciduous shrub Amelanchier ovalis Medicus. Plant Biology 7: 182–189. doi: 10.1055/s-2005-837469
[25]  Silla F, Escudero A (2003) Uptake, demand and internal cycling of nitrogen in saplings of Mediterranean Quercus species. Oecologia 136: 28–36. doi: 10.1007/s00442-003-1232-5
[26]  Silla F, Fleury M, Mediavilla S, Escudero A (2008) Effects of simulated herbivory on photosynthesis and N resorption efficiency in Quercus pyrenaica Willd. saplings. Trees-Structure and Function 22: 785–793. doi: 10.1007/s00468-008-0239-2
[27]  Uscola M (2013) Ecophysiology of nitrogen in Mediterranean plants: strategies of nitrogen forms absortion, functional responses, and use of reserves for growth. Alcalá de Henares, Spain: University of Alcalá de Henares. 183 p.
[28]  Gray JT (1983) Nurient use by evergreen and deciduous shrubs in Southern California. I. Community nutrient cycling and nutrient-use efficiency. Journal of Ecology 71: 21–41. doi: 10.2307/2259961
[29]  Gray JT, Schlesinger WH (1983) Nurient use by evergreen and deciduous shrubs in Southern California. II. Experimental investigations of the relationship between growth, nitrogen uptake and nitrogen availability. Journal of Ecology 71: 43–56. doi: 10.2307/2259962
[30]  Aerts R, Van Der Peijl MJ (1993) A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos 66: 144–147. doi: 10.2307/3545208
[31]  Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America 94: 13730–13734. doi: 10.1073/pnas.94.25.13730
[32]  Yuan ZY, Li LH, Han XG, Huang JH, Jiang GM, et al. (2005) Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments 63: 191–202. doi: 10.1016/j.jaridenv.2005.01.023
[33]  Orshan G, editor (1989) Plant pheno-morphological studies in Mediterranean type ecosystems. Dordrecht: Kluwer Acad. Pub. 404 p.
[34]  Christodoulakis NS, Tsimbani H, Fasseas C (1990) Leaf structural peculiarities in Sarcopoterium spinosum, a seasonally dimorphic subshrub. Annals of Botany 65: 291–296.
[35]  Palacio S, Maestro M, Montserrat-Martí G (2007) Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environmental and Experimental Botany 59: 34–42. doi: 10.1016/j.envexpbot.2005.10.003
[36]  Palacio S, Montserrat-Martí G (2005) Bud morphology and shoot growth dynamics in two species of Mediterranean sub-shrubs co-existing in gypsum outcrops. Annals of Botany 95: 949–958.
[37]  Palacio S, Escudero A, Montserrat-Marti G, Maestro M, Milla R, et al. (2007) Plants living on gypsum: beyond the specialist model. Annals of Botany 99: 333–343.
[38]  Quirantes J (1977) Estudio sedimentológico y estratigráfico del Terciario continental de los Monegros. Zaragoza: Institución Fernando el Católico. CSIC.
[39]  Rivas-Martínez S (1987a) Memoria del mapa de series de vegetación de Espa?a. Madrid: Ministerio de Agricultura, Pesca y Alimentación. ICONA.
[40]  Killingbeck KT (1996) Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716–1727. doi: 10.2307/2265777
[41]  Delgado-Baquerizo M, Covelo F, Gallardo A (2011) Dissolved Organic Nitrogen in Mediterranean Ecosystems. Pedosphere 21: 309–318. doi: 10.1016/s1002-0160(11)60131-8
[42]  Alvarado JJ, Ruiz JM, López-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five plant species characteristic of Gypsiferous soils. Journal of Plant Physiology 156: 612–616. doi: 10.1016/s0176-1617(00)80220-5
[43]  Ruiz JM, López-Cantarero I, Rivero RM, Romero L (2003) Sulphur phytoaccumulation in plant species characteristic of gypsipherous soils. International Journal of Phytoremediation 5: 203–210. doi: 10.1080/713779220
[44]  Palacio S, Montserrat-Marti G (2007) Above and belowground phenology of four Mediterranean sub-shrubs. Preliminary results on root-shoot competition. Journal of Arid Environments 68: 522–533. doi: 10.1016/j.jaridenv.2006.07.008
[45]  Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant and soil 321: 153–187. doi: 10.1007/s11104-009-9929-9
[46]  Braun-Blanquet J, Bolòs O (1957) Les groupements végétaux du Bassin Moyen de l'Ebre et leur dynamisme. Anales de la Estación Experimental de Aula Dei 5: 1–266.
[47]  Mota JF, Sola AJ, Dana ED (2003) Plant succession in abandoned gypsum quarries in SE Spain. Phytocoenologia 33: 13–28. doi: 10.1127/0340-269x/2003/0033-0013
[48]  Palacio S, Montserrat-Martí G (2006) Comparison of the bud morphology and shoot growth dynamics of four species of Mediterranean sub-shrubs growing along an altitude gradient. Botanical Journal of the Linnean Society 151: 527–539. doi: 10.1111/j.1095-8339.2006.00542.x
[49]  Shmida A, Burgess L (1988) Plant growth-form strategies and vegetation types in arid environments. In: Werger MJA, Aart PJMvd, During HJ, Verhoeven JTA, editors. Plant Form and Vegetation Structure. The Hague: SPB Academic Pub. pp. 211–241.
[50]  Palacio S (2006) Phenomorphology and functional strategies of the main types of Mediterranean woody shrubs of the Pre-Pyrenees. Fenomorfología y estrategias funcionales de los principales tipos de caméfitos le?osos mediterráneos del prepirineo. Pirineos 161: 159–170. doi: 10.3989/pirineos.2006.v161.8


comments powered by Disqus

Contact Us


微信:OALib Journal