All Title Author
Keywords Abstract

PLOS ONE  2014 

Chlorella Induces Stomatal Closure via NADPH Oxidase-Dependent ROS Production and Its Effects on Instantaneous Water Use Efficiency in Vicia faba

DOI: 10.1371/journal.pone.0093290

Full-Text   Cite this paper   Add to My Lib


Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in Vicia faba via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.


[1]  Jiang K, Sorefan K, Deeks MJ, Bevan MW, Hussey PJ, et al. (2012) The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell 24: 2031–2040. doi: 10.1105/tpc.112.096263
[2]  Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424: 901–908. doi: 10.1038/nature01843
[3]  Chaves M, Oliveira M (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55: 2365–2384. doi: 10.1093/jxb/erh269
[4]  Condon A, Richards R, Rebetzke G, Farquhar G (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42: 122–131. doi: 10.2135/cropsci2002.0122
[5]  Grimmer MK, Foulkes MJ, Paveley ND (2012) Foliar pathogenesis and plant water relations: a review. J Exp Bot 63: 4321–4331. doi: 10.1093/jxb/ers143
[6]  Wang GX, Zhang J, Liao JX, Wang JL (2001) Hydropassive evidence and effective factors in stomatal oscillations of Glycyrrhiza inflata under desert conditions. Plant Sci 160: 1007–1013. doi: 10.1016/s0168-9452(01)00344-2
[7]  Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69: 451–462. doi: 10.1007/s11103-008-9427-0
[8]  Lee S, Choi H, Suh S, Doo I-S, Oh K-Y, et al. (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121: 147–152. doi: 10.1104/pp.121.1.147
[9]  Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969–980. doi: 10.1016/j.cell.2006.06.054
[10]  Schulze-Lefert P, Robatzek S (2006) Plant pathogens trick guard cells into opening the gates. Cell 126: 831–834. doi: 10.1016/j.cell.2006.08.020
[11]  Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69: 473–488. doi: 10.1007/s11103-008-9435-0
[12]  Koers S, Guzel-Deger A, Marten I, Roelfsema MRG (2011) Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels. Plant J 68: 670–680. doi: 10.1111/j.1365-313x.2011.04719.x
[13]  Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Ann Rev Phytopathol 46: 101–122. doi: 10.1146/annurev.phyto.121107.104959
[14]  Zeng W, Melotto M, He SY (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotech 21: 599–603. doi: 10.1016/j.copbio.2010.05.006
[15]  Gao J, Wang N, Wang G-X (2013) Saccharomyces cerevisiae-induced stomatal closure mainly mediated by salicylhydroxamic acid-sensitive peroxidases in Vicia faba. Plant Physiol Bioch 65: 27–31. doi: 10.1016/j.plaphy.2013.01.008
[16]  Keffer J, Kleinheinz G (2002) Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J Ind Microbiol Biot 29: 275–280. doi: 10.1038/sj/jim/7000313
[17]  Guzman S, Gato A, Calleja J (2001) Antiinflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 15: 224–230. doi: 10.1002/ptr.715
[18]  Miranda M, Sato S, Mancini-Filho J (2001) Antioxidant activity of the microalga Chlorella vulgaris cultered on special conditions. Boll Chim Farm 140: 165–168.
[19]  Jong-Yuh C, Mei-Fen S (2005) Potential hypoglycemic effects of Chlorella in streptozotocin-induced diabetic mice. Life Sci 77: 980–990. doi: 10.1016/j.lfs.2004.12.036
[20]  Park JY, Cho HY, Kim JK, Noh KH, Yang JR, et al. (2005) Chlorella dichloromethane extract ameliorates NO production and iNOS expression through the down-regulation of NFκB activity mediated by suppressed oxidative stress in RAW 264.7 macrophages. Clin Chim Acta 351: 185–196. doi: 10.1016/j.cccn.2004.09.013
[21]  Lee HS, Kim MK (2009) Effect of Chlorella vulgaris on glucose metabolism in Wistar rats fed high fat diet. J Med Food 12: 1029–1037. doi: 10.1089/jmf.2008.1269
[22]  Li X, Jiang ML, He LQ, Li LL, Ji DX, et al. (2010) The effects of extracts of Chlorella vulgaris on seed germination of cruciferous vegetables. Jiangsu Agr Sci 4: 160–162 (In Chinese).
[23]  Yun HJ, Kim I, Kwon SH, Kang JS, Om AS (2011) Protective effect of Chlorella vulgaris against lead-induced oxidative stress in rat brains. J Health Sci 57: 245–254. doi: 10.1248/jhs.57.245
[24]  Khokon MAR, Hossain MA, Munemasa S, Uraji M, Nakamura Y, et al. (2010a) Yeast elicitor-induced stomatal closure and peroxidase-mediated ROS production in Arabidopsis. Plant Cell Physiol 51: 1915–1921. doi: 10.1093/pcp/pcq145
[25]  Luis A, Corpas FJ, Sandalio LM, Palma JM, Gómez M, et al. (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53: 1255–1272. doi: 10.1093/jexbot/53.372.1255
[26]  Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405–410. doi: 10.1016/s1360-1385(02)02312-9
[27]  Vranova E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53: 1227–1236. doi: 10.1093/jexbot/53.372.1227
[28]  Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11: 80–88. doi: 10.1016/j.tplants.2005.12.009
[29]  Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, et al. (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22: 2623–2633. doi: 10.1093/emboj/cdg277
[30]  Desikan R, Cheung MK, Clarke A, Golding S, Sagi M, et al. (2004) Hydrogen peroxide is a common signal for darkness-and ABA-induced stomatal closure in Pisum sativum. Funct Plant Biol 31: 913–920. doi: 10.1071/fp04035
[31]  Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate-and abscisic acid-induced stomatal closure. Plant Physiol 134: 1536–1545. doi: 10.1104/pp.103.032250
[32]  Joo JH, Wang S, Chen J, Jones A, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17: 957–970. doi: 10.1105/tpc.104.029603
[33]  Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, et al. (2006) Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47: 907–916. doi: 10.1111/j.1365-313x.2006.02842.x
[34]  Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, et al. (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143: 1398–1407. doi: 10.1104/pp.106.091298
[35]  Khokon M, Jahan MS, Rahman T, Hossain MA, Muroyama D, et al. (2011) Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. Plant Cell Environ 34: 1900–1906. doi: 10.1111/j.1365-3040.2011.02385.x
[36]  He J-M, Ma X-G, Zhang Y, Sun T-F, Xu F-F, et al. (2013) Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves. Plant Physiol 161: 1570–1583. doi: 10.1104/pp.112.211623
[37]  Mori IC, Pinontoan R, Kawano T, Muto S (2001) Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol 42: 1383–1388. doi: 10.1093/pcp/pce176
[38]  Khokon MAR, Uraji M, Munemasa S, Okuma E, Nakamura Y, et al. (2010b) Chitosan-induced stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis. Biosci Biotech Bioch 74: 2313–2315. doi: 10.1271/bbb.100340
[39]  He J, Yue X, Wang R, Zhang Y (2011) Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L. J Exp Bot 62: 2657–2666. doi: 10.1093/jxb/erq431
[40]  Khokon MAR, Okuma E, Hossain MA, Munemasa S, Uraji M, et al. (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34: 434–443. doi: 10.1111/j.1365-3040.2010.02253.x
[41]  Hoque TS, Uraji M, Ye W, Hossain MA, Nakamura Y, et al. (2012) Methylglyoxal-induced stomatal closure accompanied by peroxidase-mediated ROS production in Arabidopsis. J Plant Physiol 979–986. doi: 10.1016/j.jplph.2012.02.007
[42]  Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, et al. (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126: 1438–1448. doi: 10.1104/pp.126.4.1438
[43]  Yang HM, Zhang XY, Wang GX, Li Y, Wei XP (2003) Cytosolic calcium oscillation may induce stomatal oscillation in Vicia faba. Plant Sci 165: 1117–1122. doi: 10.1016/s0168-9452(03)00319-4
[44]  Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, et al. (2009) Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ Exp Bot 66: 493–500. doi: 10.1016/j.envexpbot.2009.01.004
[45]  Condon A, Richards R, Rebetzke G, Farquhar G (2004) Breeding for high water-use efficiency. J Exp Bot 55: 2447–2460. doi: 10.1093/jxb/erh277
[46]  Krupenina NA, Bulychev AA, Roelfsema MRG, Schreiber U (2008) Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photoch Photobio Sci 7: 681–688. doi: 10.1039/b802243g
[47]  Guidi L, Degl'Innocenti E, Genovesi S, Soldatini GF (2005) Photosynthetic process and activities of enzymes involved in the phenylpropanoid pathway in resistant and sensitive genotypes of Lycopersicon esculentum L. exposed to ozone. Plant Sci 168: 153–160. doi: 10.1016/j.plantsci.2004.07.027
[48]  Ko?cielniak J, Biesaga-Ko?cielniak J (2006) Photosynthesis and non-photochemical excitation quenching components of chlorophyll excitation in maize and field bean during chilling at different photon flux density. Photosynthetica 44: 174–180. doi: 10.1007/s11099-006-0003-z
[49]  Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, et al. (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56: 264–273. doi: 10.1111/j.1365-313x.2008.03593.x
[50]  Silva Júnior JMd, Rodrigues M, Castro EMd, Bertolucci SKV, Pasqual M (2012) Changes in anatomy and chlorophyll synthesis in orchids propagated in vitro in the presence of urea-. doi: 10.4025/actasciagron. v35i1. 15356 Acta Sci Agron 35: 65–72.
[51]  Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, et al. (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731–734. doi: 10.1038/35021067
[52]  Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14: 3089–3099. doi: 10.1105/tpc.007906
[53]  Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45: 113–122. doi: 10.1111/j.1365-313x.2005.02615.x
[54]  Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5: 1003–1011.
[55]  Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, et al. (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749–760. doi: 10.1016/j.cell.2006.03.037
[56]  Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, et al. (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. PNAS 104: 19613–19618. doi: 10.1073/pnas.0705147104
[57]  Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, et al. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764–767. doi: 10.1038/nature02485
[58]  Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60: 379–406. doi: 10.1146/annurev.arplant.57.032905.105346
[59]  Sawinski K, Mersmann S, Robatzek S, B?hmer M (2013) Guarding the green: pathways to stomatal immunity. Mol Plant Microbe In 26: 626–632. doi: 10.1094/mpmi-12-12-0288-cr
[60]  Henderson RK, Baker A, Parsons SA, Jefferson B (2008) Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res 42: 3435–3445. doi: 10.1016/j.watres.2007.10.032
[61]  Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237: 239–253. doi: 10.1007/s00425-012-1765-0
[62]  Cuevas JC, Sánchez DH, Marina M, Ruiz OA (2004) Do polyamines modulate the Lotus glaber NADPH oxidation activity induced by the herbicide methyl viologen? Funct Plant Biol 31: 921–928. doi: 10.1071/fp04007
[63]  Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plantarum 133: 481–489. doi: 10.1111/j.1399-3054.2008.01090.x
[64]  Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17: 9–15. doi: 10.1016/j.tplants.2011.10.001
[65]  Macho AP, Boutrot F, Rathjen JP, Zipfel C (2012) Aspartate oxidase plays an important role in Arabidopsis stomatal immunity. Plant Physiol 159: 1845–1856. doi: 10.1104/pp.112.199810
[66]  Underwood W, Melotto M, He SY (2007) Role of plant stomata in bacterial invasion. Cell Microbiol 9: 1621–1629. doi: 10.1111/j.1462-5822.2007.00938.x
[67]  Chaves MM, Santos TP, Souza CR, Ortuno M, Rodrigues M, et al. (2007) Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann Appl Biol 150: 237–252. doi: 10.1111/j.1744-7348.2006.00123.x
[68]  Neill S, Barros R, Bright J, Desikan R, Hancock J, et al. (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59: 165–176. doi: 10.1093/jxb/erm293
[69]  Wan J, Griffiths R, Ying J, McCourt P, Huang Y (2009) Development of drought-tolerant Canola (Brassica napus L.) through genetic modulation of ABA-mediated stomatal responses. Crop Sci 49: 1539–1554. doi: 10.2135/cropsci2008.09.0568
[70]  Vahisalu T, Puz?rjova I, Brosché M, Valk E, Lepiku M, et al. (2010) Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J 62: 442–453. doi: 10.1111/j.1365-313x.2010.04159.x
[71]  De Souza CR, Maroco JP, Dos Santos TP, Rodrigues ML, Lopes CM, et al. (2005) Impact of deficit irrigation on water use efficiency and carbon isotope composition (δ13C) of field-grown grapevines under Mediterranean climate. J Exp Bot 56: 2163–2172. doi: 10.1093/jxb/eri216
[72]  Trejo CL, Davies WJ, Ruiz L (1993) Sensitivity of stomata to abscisic acid (an effect of the mesophyll). Plant Physiol 102: 497–502.
[73]  Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51: 659–668. doi: 10.1093/jexbot/51.345.659
[74]  Lawlor D, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25: 275–294. doi: 10.1046/j.0016-8025.2001.00814.x
[75]  Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150: 1530–1540. doi: 10.1104/pp.109.139378
[76]  Pereira EG, Oliva MA, Rosado-Souza L, Mendes GC, Colares DS, et al. (2012) Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Sci 201–202: 81–92. doi: 10.1016/j.plantsci.2012.12.003


comments powered by Disqus