All Title Author
Keywords Abstract

PLOS ONE  2014 

Targeting Class IA PI3K Isoforms Selectively Impairs Cell Growth, Survival, and Migration in Glioblastoma

DOI: 10.1371/journal.pone.0094132

Full-Text   Cite this paper   Add to My Lib


The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancer and plays a crucial role in glioblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K isoforms as a novel anti-tumor approach in glioblastoma. Consistent expression of the PI3K catalytic isoform PI3K p110α was detected in a panel of glioblastoma patient samples. In contrast, PI3K p110β expression was only rarely detected in glioblastoma patient samples. The expression of a module comprising the epidermal growth factor receptor (EGFR)/PI3K p110α/phosphorylated ribosomal S6 protein (p-S6) was correlated with shorter patient survival. Inhibition of PI3K p110α activity impaired the anchorage-dependent growth of glioblastoma cells and induced tumor regression in vivo. Inhibition of PI3K p110α or PI3K p110β also led to impaired anchorage-independent growth, a decreased migratory capacity of glioblastoma cells, and reduced the activation of the Akt/mTOR pathway. These effects were selective, because targeting of PI3K p110δ did not result in a comparable impairment of glioblastoma tumorigenic properties. Together, our data reveal that drugs targeting PI3K p110α can reduce growth in a subset of glioblastoma tumors characterized by the expression of EGFR/PI3K p110α/p-S6.


[1]  Central Brain Tumor Registry of the United States CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–22007.
[2]  Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359: 492–507. doi: 10.1056/nejmra0708126
[3]  DeAngelis LM (2001) Brain tumors. N Engl J Med 344: 114–123. doi: 10.1056/nejm200101113440207
[4]  Lee JC, Vivanco I, Beroukhim R, Huang JH, Feng WL, et al. (2006) Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Med 3: e485. doi: 10.1371/journal.pmed.0030485
[5]  Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR (2006) Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 32: 74–89. doi: 10.1016/j.ctrv.2006.01.003
[6]  Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, et al. (2003) Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 63: 2742–2746.
[7]  Chakravarti A, Zhai G, Suzuki Y, Sarkesh S, Black PM, et al. (2004) The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 22: 1926–1933. doi: 10.1200/jco.2004.07.193
[8]  Bowers DC, Fan S, Walter KA, Abounader R, Williams JA, et al. (2000) Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res 60: 4277–4283.
[9]  Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 62: 200–207.
[10]  Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, et al. (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17: 615–675. doi: 10.1146/annurev.cellbio.17.1.615
[11]  H?land K, Salm F, Arcaro A (2011) The Phosphoinositide 3-Kinase Signaling Pathway as a Therapeutic Target in Grade IV Brain Tumors. Curr Cancer Drug Targets 11: 894–918. doi: 10.2174/156800911797264743
[12]  The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068. doi: 10.1038/nature11903
[13]  Knobbe CB, Reifenberger G (2003) Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 13: 507–518. doi: 10.1111/j.1750-3639.2003.tb00481.x
[14]  Broderick DK, Di C, Parrett TJ, Samuels YR, Cummins JM, et al. (2004) Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res 64: 5048–5050. doi: 10.1158/0008-5472.can-04-1170
[15]  Hartmann C, Bartels G, Gehlhaar C, Holtkamp N, von Deimling A (2005) PIK3CA mutations in glioblastoma multiforme. Acta Neuropathol 109: 639–642. doi: 10.1007/s00401-005-1000-1
[16]  Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, et al. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29–39. doi: 10.1016/s0092-8674(00)81780-8
[17]  Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 13375–13378. doi: 10.1074/jbc.273.22.13375
[18]  Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, et al. (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304: 554. doi: 10.1126/science.1096502
[19]  Knobbe CB, Trampe-Kieslich A, Reifenberger G (2005) Genetic alteration and expression of the phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human glioblastomas. Neuropathol Appl Neurobiol 31: 486–490. doi: 10.1111/j.1365-2990.2005.00660.x
[20]  Mueller W, Mizoguchi M, Silen E, D’Amore K, Nutt CL, et al. (2005) Mutations of the PIK3CA gene are rare in human glioblastoma. Acta Neuropathol 109: 654–655. doi: 10.1007/s00401-005-1001-0
[21]  Gallia GL, Rand V, Siu IM, Eberhart CG, James CD, et al. (2006) PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol Cancer Res 4: 709–714. doi: 10.1158/1541-7786.mcr-06-0172
[22]  Mizoguchi M, Nutt CL, Mohapatra G, Louis DN (2004) Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas. Brain Pathol 14: 372–377. doi: 10.1111/j.1750-3639.2004.tb00080.x
[23]  Hui AB, Lo KW, Yin XL, Poon WS, Ng HK (2001) Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab Invest 81: 717–723. doi: 10.1038/labinvest.3780280
[24]  Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, et al. (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114: 97–109. doi: 10.1007/s00401-007-0243-4
[25]  Nilsson KP, Ikenberg K, Aslund A, Fransson S, Konradsson P, et al. (2010) Structural typing of systemic amyloidoses by luminescent-conjugated polymer spectroscopy. Am J Pathol 176: 563–574. doi: 10.2353/ajpath.2010.080797
[26]  Van Meir E, Sawamura Y, Diserens AC, Hamou MF, de Tribolet N (1990) Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer Res 50: 6683–6688.
[27]  Kaplan EL, Meier P (1958) Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association 53: 457–481. doi: 10.2307/2281868
[28]  Rodak R, Kubota H, Ishihara H, Eugster HP, Konu D, et al. (2005) Induction of reactive oxygen intermediates-dependent programmed cell death in human malignant ex vivo glioma cells and inhibition of the vascular endothelial growth factor production by taurolidine. J Neurosurg 102: 1055–1068. doi: 10.3171/jns.2005.102.6.1055
[29]  Arcaro A, Doepfner KT, Boller D, Guerreiro AS, Shalaby T, et al. (2007) Novel role for insulin as an autocrine growth factor for malignant brain tumour cells. Biochem J 406: 57–66. doi: 10.1042/bj20070309
[30]  Condliffe AM, Davidson K, Anderson KE, Ellson CD, Crabbe T, et al. (2005) Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106: 1432–1440. doi: 10.1182/blood-2005-03-0944
[31]  Chaussade C, Rewcastle GW, Kendall JD, Denny WA, Cho K, et al. (2007) Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem J 404: 449–458. doi: 10.1042/bj20070003
[32]  Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, et al. (2005) PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med 11: 507–514. doi: 10.1038/nm1232
[33]  Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE (2003) Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J Immunol 170: 2647–2654. doi: 10.4049/jimmunol.170.5.2647
[34]  Jamieson S, Flanagan JU, Kolekar S, Buchanan C, Kendall JD, et al. (2011) A drug targeting only p110alpha can block phosphoinositide 3-kinase signalling and tumour growth in certain cell types. Biochem J 438: 53–62. doi: 10.1042/bj20110502
[35]  Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, et al. (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7: 1851–1863. doi: 10.1158/1535-7163.mct-08-0017
[36]  Belkaid A, Copland IB, Massillon D, Annabi B (2006) Silencing of the human microsomal glucose-6-phosphate translocase induces glioma cell death: potential new anticancer target for curcumin. FEBS Lett 580: 3746–3752. doi: 10.1016/j.febslet.2006.05.071
[37]  Geb?ck T, Schulz MM, Koumoutsakos P, Detmar M (2009) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46: 265–274. doi: 10.2144/000113145
[38]  Katso RM, Pardo OE, Palamidessi A, Franz CM, Marinov M, et al. (2006) Phosphoinositide 3-Kinase C2beta regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. Mol Biol Cell 17: 3729–3744. doi: 10.1091/mbc.e05-11-1083
[39]  Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, et al. (2005) Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci U S A 102: 1643–1648. doi: 10.1073/pnas.0408622102
[40]  Weigelt B, Downward J (2012) Genomic Determinants of PI3K Pathway Inhibitor Response in Cancer. Front Oncol 2: 109. doi: 10.3389/fonc.2012.00109
[41]  Gymnopoulos M, Elsliger MA, Vogt PK (2007) Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci U S A 104: 5569–5574. doi: 10.1073/pnas.0701005104
[42]  Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R (2006) Epidermal growth factor receptor - mediated signal transduction in the development and therapy of gliomas. Clin Cancer Res 12: 7261–7270. doi: 10.1158/1078-0432.ccr-06-0874
[43]  Puputti M, Tynninen O, Sihto H, Blom T, Maenpaa H, et al. (2006) Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol Cancer Res 4: 927–934. doi: 10.1158/1541-7786.mcr-06-0085
[44]  Lino MM, Merlo A (2011) PI3Kinase signaling in glioblastoma. J Neurooncol 103: 417–427. doi: 10.1007/s11060-010-0442-z
[45]  Zhang S, Yu D (2010) PI(3)king apart PTEN’s role in cancer. Clin Cancer Res 16: 4325–4330. doi: 10.1158/1078-0432.ccr-09-2990
[46]  Carew JS, Kelly KR, Nawrocki ST (2011) Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol 6: 17–27. doi: 10.1007/s11523-011-0167-8
[47]  Akhavan D, Cloughesy TF, Mischel PS (2010) mTOR signaling in glioblastoma: lessons learned from bench to bedside. Neuro Oncol 12: 882–889. doi: 10.1093/neuonc/noq052
[48]  Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, et al. (2006) A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9: 341–349. doi: 10.1016/j.ccr.2006.03.029
[49]  Koul D, Fu J, Shen R, LaFortune TA, Wang S, et al. (2012) Antitumor activity of NVP-BKM120–a selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin Cancer Res 18: 184–195. doi: 10.1158/1078-0432.ccr-11-1558
[50]  Luk SK, Piekorz RP, Nurnberg B, Tony To SS (2012) The catalytic phosphoinositol 3-kinase isoform p110delta is required for glioma cell migration and invasion. Eur J Cancer 48: 149–157. doi: 10.1016/j.ejca.2011.09.006
[51]  Jia S, Liu Z, Zhang S, Liu P, Zhang L, et al. (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454: 776–779. doi: 10.1038/nature07091
[52]  Wee S, Wiederschain D, Maira SM, Loo A, Miller C, et al. (2008) PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci U S A 105: 13057–13062. doi: 10.1073/pnas.0802655105
[53]  Janku F, Wheler JJ, Naing A, Falchook GS, Hong DS, et al.. (2012) PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early phase clinical trials. Cancer Res.
[54]  Maira SM, Pecchi S, Huang A, Burger M, Knapp M, et al. (2012) Identification and Characterization of NVP-BKM120, an Orally Available Pan-Class I PI3-Kinase Inhibitor. Mol Cancer Ther 11: 317–328. doi: 10.1158/1535-7163.mct-11-0474
[55]  Kim B, Myung JK, Seo JH, Park CK, Paek SH, et al. (2010) The clinicopathologic values of the molecules associated with the main pathogenesis of the glioblastoma. J Neurol Sci 294: 112–118. doi: 10.1016/j.jns.2010.03.019
[56]  McBride SM, Perez DA, Polley MY, Vandenberg SR, Smith JS, et al. (2010) Activation of PI3K/mTOR pathway occurs in most adult low-grade gliomas and predicts patient survival. J Neurooncol 97: 33–40. doi: 10.1007/s11060-009-0004-4
[57]  Ermoian RP, Furniss CS, Lamborn KR, Basila D, Berger MS, et al. (2002) Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin Cancer Res 8: 1100–1106.
[58]  Endersby R, Zhu X, Hay N, Ellison DW, Baker SJ (2011) Nonredundant functions for Akt isoforms in astrocyte growth and gliomagenesis in an orthotopic transplantation model. Cancer Res 71: 4106–4116. doi: 10.1158/0008-5472.can-10-3597
[59]  Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, et al. (2010) Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol 12: 221–232. doi: 10.1093/neuonc/nop026


comments powered by Disqus