All Title Author
Keywords Abstract

PLOS ONE  2014 

Analysis, Optimization and Verification of Illumina-Generated 16S rRNA Gene Amplicon Surveys

DOI: 10.1371/journal.pone.0094249

Full-Text   Cite this paper   Add to My Lib

Abstract:

The exploration of microbial communities by sequencing 16S rRNA genes has expanded with low-cost, high-throughput sequencing instruments. Illumina-based 16S rRNA gene sequencing has recently gained popularity over 454 pyrosequencing due to its lower costs, higher accuracy and greater throughput. Although recent reports suggest that Illumina and 454 pyrosequencing provide similar beta diversity measures, it remains to be demonstrated that pre-existing 454 pyrosequencing workflows can transfer directly from 454 to Illumina MiSeq sequencing by simply changing the sequencing adapters of the primers. In this study, we modified 454 pyrosequencing primers targeting the V4-V5 hyper-variable regions of the 16S rRNA gene to be compatible with Illumina sequencers. Microbial communities from cows, humans, leeches, mice, sewage, and termites and a mock community were analyzed by 454 and MiSeq sequencing of the V4-V5 region and MiSeq sequencing of the V4 region. Our analysis revealed that reference-based OTU clustering alone introduced biases compared to de novo clustering, preventing certain taxa from being observed in some samples. Based on this we devised and recommend an analysis pipeline that includes read merging, contaminant filtering, and reference-based clustering followed by de novo OTU clustering, which produces diversity measures consistent with de novo OTU clustering analysis. Low levels of dataset contamination with Illumina sequencing were discovered that could affect analyses that require highly sensitive approaches. While moving to Illumina-based sequencing platforms promises to provide deeper insights into the breadth and function of microbial diversity, our results show that care must be taken to ensure that sequencing and processing artifacts do not obscure true microbial diversity.

References

[1]  Stahl DA, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224: 409–411. doi: 10.1126/science.224.4647.409
[2]  Stahl DA, Lane DJ, Olsen GJ, Pace NR (1985) Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl Environ Microbiol 49: 1379–1384.
[3]  Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, et al. (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3: 700–714. doi: 10.1038/ismej.2009.2
[4]  Nelson MC, Morrison M, Yu Z (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102: 3730–3739. doi: 10.1016/j.biortech.2010.11.119
[5]  Ley RE, B?ckhed F, Turnbaugh P, Lozupone CA, Knight RD, et al. (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102: 11070–11075. doi: 10.1073/pnas.0504978102
[6]  Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, et al. (2009) Bacterial community variation in human body habitats across space and time. Science 326: 1694–1697. doi: 10.1126/science.1177486
[7]  Jumpstart Consortium Human Microbiome Project Data Generation Working Group (2012) Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS ONE 7: e39315. doi: 10.1371/journal.pone.0039315
[8]  Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, et al. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere.”. Proc Natl Acad Sci USA 103: 12115–12120. doi: 10.1073/pnas.0605127103
[9]  Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484. doi: 10.1038/nature07540
[10]  Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486: 215–221. doi: 10.1371/journal.pone.0039315
[11]  Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8: R143. doi: 10.1186/gb-2007-8-7-r143
[12]  Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12: 1889–1898. doi: 10.1111/j.1462-2920.2010.02193.x
[13]  Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, et al. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6: 639–641. doi: 10.1038/nmeth.1361
[14]  Reeder J, Knight R (2010) Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods 7: 668–669. doi: 10.1038/nmeth0910-668b
[15]  Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, et al. (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30: 434–439. doi: 10.1038/nbt.2198
[16]  Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, et al. (2013) Updating benchtop sequencing performance comparison. Nat Biotechnol 31: 294–296. doi: 10.1038/nbt.2522
[17]  Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of Multimillion-Sequence 16S rRNA Gene Libraries from Complex Microbial Communities by Assembling Paired-End Illumina Reads. Appl Environ Microbiol 77: 3846–3852. doi: 10.1128/aem.02772-10
[18]  Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, et al. (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6: 1621–1624. doi: 10.1038/ismej.2012.8
[19]  Degnan PH, Ochman H (2011) Illumina-based analysis of microbial community diversity. ISME J 6: 183–194. doi: 10.1038/ismej.2011.74
[20]  Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, et al. (2010) Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLoS ONE 5: e15406. doi: 10.1371/journal.pone.0015406
[21]  Ram JL, Karim AS, Sendler ED, Kato I (2011) Strategy for microbiome analysis using 16S rRNA gene sequence analysis on the Illumina sequencing platform. Syst Biol Reprod Med 57: 162–170. doi: 10.3109/19396368.2011.555598
[22]  Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl Environ Microbiol 79: 5112–5120. doi: 10.1128/aem.01043-13
[23]  Eren AM, Vineis JH, Morrison HG, Sogin ML (2013) A filtering method to generate high quality short reads using illumina paired-end technology. PLoS ONE 8: e66643. doi: 10.1371/journal.pone.0066643
[24]  Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, et al. (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108 Suppl 14516–4522. doi: 10.1073/pnas.1000080107
[25]  Claesson MJ, Wang Q, O'Sullivan O, Greene-Diniz R, Cole JR, et al. (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38: e200. doi: 10.1093/nar/gkq873
[26]  Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct Comparisons of Illumina vs. Roche 454 Sequencing Technologies on the Same Microbial Community DNA Sample. PLoS ONE 7: e30087. doi: 10.1371/journal.pone.0030087
[27]  Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 36: 808–812.
[28]  Marteinsson VT, Rúnarsson á, Stefánsson A, Thorsteinsson T, Jóhannesson T, et al. (2013) Microbial communities in the subglacial waters of the Vatnaj?kull ice cap, Iceland. ISME J 7: 427–437. doi: 10.1038/ismej.2012.97
[29]  Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336. doi: 10.1038/nmeth.f.303
[30]  DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069–5072. doi: 10.1128/aem.03006-05
[31]  McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, et al. (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6: 610–618. doi: 10.1038/ismej.2011.139
[32]  Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, et al. (2011) Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J 6: 94–103. doi: 10.1038/ismej.2011.82
[33]  Illumina (2013) Best Practices for High Sensitivity Applications: Minimizing Sample Carryover. Available: https://my.illumina.com/MyIllumina/Bulle?tin/DVzvSUldoEqh4oUyPaxoXA/best-practice?s-for-high-sensitivity-applications-m. Accessed 2014 Mar 18.
[34]  Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, et al. (2012) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10: 57–59. doi: 10.1038/nmeth.2276
[35]  Reysenbach A-L, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58: 3417–3418.
[36]  Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, et al. (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43: 1450–1455. doi: 10.1016/j.soilbio.2011.03.012
[37]  Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194–2200. doi: 10.1093/bioinformatics/btr381
[38]  Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, et al. (2010) Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J 4: 642–647. doi: 10.1038/ismej.2009.153
[39]  Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, et al. (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21: 494–504. doi: 10.1101/gr.112730.110
[40]  Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, et al. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188–7196. doi: 10.1093/nar/gkm864
[41]  Worthen PL, Gode CJ, Graf J (2006) Culture-independent characterization of the digestive-tract microbiota of the medicinal leech reveals a tripartite symbiosis. Appl Environ Microbiol 72: 4775–4781. doi: 10.1128/aem.00356-06
[42]  Laufer AS, Siddall ME, Graf J (2008) Characterization of the digestive-tract microbiota of Hirudo orientalis, a european medicinal leech. Appl Environ Microbiol 74: 6151–6154. doi: 10.1128/aem.00795-08

Full-Text

comments powered by Disqus