全部 标题 作者
关键词 摘要

PLOS ONE  2014 

Human Wharton’s Jelly Mesenchymal Stem Cells Plasticity Augments Scar-Free Skin Wound Healing with Hair Growth

DOI: 10.1371/journal.pone.0093726

Full-Text   Cite this paper   Add to My Lib


Human mesenchymal stem cells (MSCs) are a promising candidate for cell-based transplantation and regenerative medicine therapies. Thus in the present study Wharton’s Jelly Mesenchymal Stem Cells (WJ-MSCs) have been derived from extra embryonic umbilical cord matrix following removal of both arteries and vein. Also, to overcome the clinical limitations posed by fetal bovine serum (FBS) supplementation because of xenogeneic origin of FBS, usual FBS cell culture supplement has been replaced with human platelet lysate (HPL). Apart from general characteristic features of bone marrow-derived MSCs, wharton jelly-derived MSCs have the ability to maintain phenotypic attributes, cell growth kinetics, cell cycle pattern, in vitro multilineage differentiation plasticity, apoptotic pattern, normal karyotype-like intrinsic mesenchymal stem cell properties in long-term in vitro cultures. Moreover, the WJ-MSCs exhibited the in vitro multilineage differentiation capacity by giving rise to differentiated cells of not only mesodermal lineage but also to the cells of ectodermal and endodermal lineage. Also, WJ-MSC did not present any aberrant cell state upon in vivo transplantation in SCID mice and in vitro soft agar assays. The immunomodulatory potential assessed by gene expression levels of immunomodulatory factors upon exposure to inflammatory cytokines in the fetal WJ-MSCs was relatively higher compared to adult bone marrow-derived MSCs. WJ-MSCs seeded on decellularized amniotic membrane scaffold transplantation on the skin injury of SCID mice model demonstrates that combination of WJ-MSCs and decellularized amniotic membrane scaffold exhibited significantly better wound-healing capabilities, having reduced scar formation with hair growth and improved biomechanical properties of regenerated skin compared to WJ-MSCs alone. Further, our experimental data indicate that indocyanin green (ICG) at optimal concentration can be resourcefully used for labeling of stem cells and in vivo tracking by near infrared fluorescence non-invasive live cell imaging of labelled transplanted cells, thus proving its utility for therapeutic applications.


[1]  Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136: 42–60. doi: 10.1002/9780470513637.ch4
[2]  Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13: 4279–4295. doi: 10.1091/mbc.e02-02-0105
[3]  Sabapathy V, Ravi S, Srivastava V, Srivastava A, Kumar S (2012) Long-Term Cultured Human Term Placenta-Derived Mesenchymal Stem Cells of Maternal Origin Displays Plasticity. Stem Cells Int 2012: 1–11. doi: 10.1155/2012/174328
[4]  Wang H-S, Hung S-C, Peng S-T, Huang C-C, Wei H-M, et al. (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22: 1330–1337. doi: 10.1634/stemcells.2004-0013
[5]  Hass R, Kasper C, B?hm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9: 12. doi: 10.1186/1478-811x-9-12
[6]  Abdulrazzak H, Moschidou D, Jones G, Guillot PV (2010) Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J R Soc Interface 7 Suppl 6S689–706. doi: 10.1098/rsif.2010.0347.focus
[7]  Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, et al. (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371: 1579–1586. doi: 10.1016/s0140-6736(08)60690-x
[8]  Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23: 220–229. doi: 10.1634/stemcells.2004-0166
[9]  McElreavey KD, Irvine AI, Ennis KT, McLean WH (1991) Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem Soc Trans 19: 29S.
[10]  Kuroda Y, Kitada M, Wakao S, Dezawa M (2011) Mesenchymal stem cells and umbilical cord as a source for schwann cell differentiation: Their potential in peripheral nerve repair. Open Tissue Eng Regen Med J: 54–63.
[11]  Du T, Zou X, Cheng J, Wu S, Zhong L, et al. (2013) Human Wharton’s jelly-derived mesenchymal stromal cells reduce renal fibrosis through induction of native and foreign hepatocyte growth factor synthesis in injured tubular epithelial cells. Stem Cell Res Ther 4: 59. doi: 10.1186/scrt215
[12]  Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, et al. (2009) Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175: 303–313. doi: 10.2353/ajpath.2009.080629
[13]  Lo Iacono M, Anzalone R, Corrao S, Guiffre M, Di Stefano A, et al.. (2011) Perinatal and Wharton’s Jelly-Derived Mesenchymal Stem Cells in Cartilage Regenerative Medicine and Tissue Engineering Strategies. Open Tissue Eng Regen Med J: 72–81.
[14]  Scheers I, Lombard C, Najimi M, Sokal E (2011) Cell Therapy for the Treatment of Metabolic Liver Disease: An Update on the Umbilical Cord Derived Stem Cells Candidates. Open Tissue Eng Regen Med J: 48–53.
[15]  Tamura M, Kawabata A, Ohta N, Uppalapati L, Becker KG, et al.. (2011) Wharton’s Jelly Stem Cells as Agents for Cancer Therapy. Open Tissue Eng Regen Med J: 39–47.
[16]  Zhang Y, Hao H, Liu J, Fu X, Han W (2012) Repair and regeneration of skin injury by transplanting microparticles mixed with Wharton’s jelly and MSCs from the human umbilical cord. Int J Low Extrem Wounds 11: 264–270. doi: 10.1177/1534734612463577
[17]  Tam K, Suganya C, Venugopal J, Biswas A, Choolani M, et al.. (2013) A Nanoscaffold Impregnated with Human Wharton’s Jelly Stem Cells or Its Secretions Improves Healing of Wounds. J Cell Biochem.
[18]  De Luca A, Verardi R, Neva A, Benzoni P, Crescini E, et al. (2013) Comparative Analysis of Mesenchymal Stromal Cells Biological Properties. ISRN Stem Cells 2013: 1–9. doi: 10.1155/2013/674671
[19]  Horn P, Bokermann G, Cholewa D, Bork S, Walenda T, et al. (2010) Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 12: 888–898. doi: 10.3109/14653249.2010.501788
[20]  Stute N, Holtz K, Bubenheim M, Lange C, Blake F, et al. (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 32: 1212–1225. doi: 10.1016/j.exphem.2004.09.003
[21]  Battula VL, Bareiss PM, Treml S, Conrad S, Albert I, et al. (2007) Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 75: 279–291. doi: 10.1111/j.1432-0436.2006.00139.x
[22]  Ben Azouna N, Jenhani F, Regaya Z, Berraeis L, Ben Othman T, et al. (2012) Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res Ther 3: 6. doi: 10.1186/scrt97
[23]  Jonak C, Skvara H, Kunstfeld R, Trautinger F, Schmid JA (2011) Intradermal indocyanine green for in vivo fluorescence laser scanning microscopy of human skin: a pilot study. PLoS One 6: e23972. doi: 10.1371/journal.pone.0023972
[24]  Can A, Balci D (2011) Isolation, culture, and characterization of human umbilical cord stroma-derived mesenchymal stem cells. Methods Mol Biol 698: 51–62. doi: 10.1007/978-1-60761-999-4_5
[25]  Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61: 364–370. doi: 10.1002/1097-4547(20000815)61:4<364::aid-jnr2>3.3.co;2-3
[26]  Wilshaw S-P, Kearney JN, Fisher J, Ingham E (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 12: 2117–2129. doi: 10.1089/ten.2006.12.2117
[27]  Kim D-W, Staples M, Shinozuka K, Pantcheva P, Kang S-D, et al. (2013) Wharton’s Jelly-Derived Mesenchymal Stem Cells: Phenotypic Characterization and Optimizing Their Therapeutic Potential for Clinical Applications. Int J Mol Sci 14: 11692–11712. doi: 10.3390/ijms140611692
[28]  Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317. doi: 10.1080/14653240600855905
[29]  Singer AJ, Thode HC, McClain SA (2000) Development of a histomorphologic scale to quantify cutaneous scars after burns. Acad Emerg Med 7: 1083–1088. doi: 10.1111/j.1553-2712.2000.tb01256.x
[30]  Kodjikian L, Richter T, Halberstadt M, Beby F, Flueckiger F, et al. (2005) Toxic effects of indocyanine green, infracyanine green, and trypan blue on the human retinal pigmented epithelium. Graefes Arch Clin Exp Ophthalmol 243: 917–925. doi: 10.1007/s00417-004-1121-6
[31]  Murata M, Shimizu S, Horiuchi S, Sato S (2005) The effect of indocyanine green on cultured retinal glial cells. Retina 25: 75–80. doi: 10.1097/00006982-200501000-00011
[32]  Gale JS, Proulx AA, Gonder JR, Mao AJ, Hutnik CML (2004) Comparison of the in vitro toxicity of indocyanine green to that of trypan blue in human retinal pigment epithelium cell cultures. Am J Ophthalmol 138: 64–69. doi: 10.1016/j.ajo.2004.02.061
[33]  Anzalone R, Lo Iacono M, Corrao S, Magno F, Loria T, et al. (2010) New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev 19: 423–438. doi: 10.1089/scd.2009.0299
[34]  Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM (2007) Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 25: 646–654. doi: 10.1634/stemcells.2006-0208
[35]  Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, et al. (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30: 42–48. doi: 10.1016/s0301-472x(01)00769-x
[36]  Di Nicola M (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838–3843. doi: 10.1182/blood.v99.10.3838
[37]  English K (2013) Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 91: 19–26. doi: 10.1038/icb.2012.56
[38]  Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010) Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 5: e9016. doi: 10.1371/journal.pone.0009016
[39]  Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA (2012) Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med 1: 142–149. doi: 10.5966/sctm.2011-0018
[40]  Boddington SE, Henning TD, Jha P, Schlieve CR, Mandrussow L, et al. (2010) Labeling human embryonic stem cell-derived cardiomyocytes with indocyanine green for noninvasive tracking with optical imaging: an FDA-compatible alternative to firefly luciferase. Cell Transplant 19: 55–65. doi: 10.3727/096368909x


comments powered by Disqus