March8 is a member of a family of transmembrane E3 ubiquitin ligases that have been studied mostly for their role in the immune system. We find that March8 is expressed in the zebrafish egg and early embryo, suggesting a role in development. Both knock-down and overexpression of March8 leads to abnormal development. The phenotype of zebrafish embryos and Xenopus animal explants overexpressing March8 implicates impairment of cell adhesion as a cause of the effect. In zebrafish embryos and in cultured cells, overexpression of March8 leads to a reduction in the surface levels of E-cadherin, a major cell-cell adhesion molecule. Experiments in cell culture further show that E-cadherin can be ubiquitinated by March8. On the basis of these observations we suggest that March8 functions in the embryo to modulate the strength of cell adhesion by regulating the localization of E-cadherin.
References
[1]
Marrs JA, Nelson WJ (1996) Cadherin cell adhesion molecules in differentiation and embryogenesis. Int Rev Cytol 165: 159–205. doi: 10.1016/s0074-7696(08)62222-6
[2]
Keller R (2002) Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298: 1950–1954. doi: 10.1126/science.1079478
[3]
Takeichi M (1988) The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102: 639–655.
[4]
Babb SG, Barnett J, Doedens AL, Cobb N, Liu Q, et al. (2001) Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development. Dev Dyn 221: 231–237. doi: 10.1002/dvdy.1132
[5]
Babb SG, Marrs JA (2004) E-cadherin regulates cell movements and tissue formation in early zebrafish embryos. Dev Dyn 230: 263–277. doi: 10.1002/dvdy.20057
[6]
Kane DA, McFarland KN, Warga RM (2005) Mutations in half baked/E-cadherin block cell behaviors that are necessary for teleost epiboly. Development 132: 1105–1116. doi: 10.1242/dev.01668
[7]
Shimizu T, Yabe T, Muraoka O, Yonemura S, Aramaki S, et al. (2005) E-cadherin is required for gastrulation cell movements in zebrafish. Mech Dev 122: 747–763. doi: 10.1016/j.mod.2005.03.008
[8]
Lin F, Chen S, Sepich DS, Panizzi JR, Clendenon SG, et al. (2009) Galpha12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. J Cell Biol 184: 909–921. doi: 10.1083/jcb.200805148
[9]
Choi YS, Gumbiner B (1989) Expression of cell adhesion molecule E-cadherin in Xenopus embryos begins at gastrulation and predominates in the ectoderm. J Cell Biol 108: 2449–2458. doi: 10.1083/jcb.108.6.2449
[10]
Choi YS, Sehgal R, McCrea P, Gumbiner B (1990) A cadherin-like protein in eggs and cleaving embryos of Xenopus laevis is expressed in oocytes in response to progesterone. J Cell Biol 110: 1575–1582. doi: 10.1083/jcb.110.5.1575
[11]
Ginsberg D, DeSimone D, Geiger B (1991) Expression of a novel cadherin (EP-cadherin) in unfertilized eggs and early Xenopus embryos. Development 111: 315–325.
[12]
Levi G, Gumbiner B, Thiery JP (1991) The distribution of E-cadherin during Xenopus laevis development. Development 111: 159–169.
[13]
Heasman J, Ginsberg D, Geiger B, Goldstone K, Pratt T, et al. (1994) A functional test for maternally inherited cadherin in Xenopus shows its importance in cell adhesion at the blastula stage. Development 120: 49–57.
[14]
Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6: 622–634. doi: 10.1038/nrm1699
[15]
Halbleib JM, Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20: 3199–3214. doi: 10.1101/gad.1486806
[16]
Bryant DM, Stow JL (2004) The ins and outs of E-cadherin trafficking. Trends Cell Biol 14: 427–434. doi: 10.1016/j.tcb.2004.07.007
[17]
Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, et al. (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4: 222–231. doi: 10.1038/ncb758
[18]
Goto E, Ishido S, Sato Y, Ohgimoto S, Ohgimoto K, et al. (2003) c-MIR, a human E3 ubiquitin ligase, is a functional homolog of herpesvirus proteins MIR1 and MIR2 and has similar activity. J Biol Chem 278: 14657–14668. doi: 10.1074/jbc.m211285200
[19]
Ohmura-Hoshino M, Goto E, Matsuki Y, Aoki M, Mito M, et al. (2006) A novel family of membrane-bound E3 ubiquitin ligases. J Biochem 140: 147–154. doi: 10.1093/jb/mvj160
[20]
Wang X, Herr RA, Hansen T (2008) Viral and cellular MARCH ubiquitin ligases and cancer. Semin Cancer Biol 18: 441–450. doi: 10.1016/j.semcancer.2008.09.002
[21]
Bartee E, Mansouri M, Hovey Nerenberg BT, Gouveia K, Fruh K (2004) Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J Virol 78: 1109–1120. doi: 10.1128/jvi.78.3.1109-1120.2004
[22]
Bartee E, Eyster CA, Viswanathan K, Mansouri M, Donaldson JG, et al. (2010) Membrane-Associated RING-CH proteins associate with Bap31 and target CD81 and CD44 to lysosomes. PLoS One 5: e15132. doi: 10.1371/journal.pone.0015132
[23]
Matsuki Y, Ohmura-Hoshino M, Goto E, Aoki M, Mito-Yoshida M, et al. (2007) Novel regulation of MHC class II function in B cells. EMBO J 26: 846–854. doi: 10.1038/sj.emboj.7601556
[24]
De Gassart A, Camosseto V, Thibodeau J, Ceppi M, Catalan N, et al. (2008) MHC class II stabilization at the surface of human dendritic cells is the result of maturation-dependent MARCH I down-regulation. Proc Natl Acad Sci U S A 105: 3491–3496. doi: 10.1073/pnas.0708874105
[25]
Chen R, Li M, Zhang Y, Zhou Q, Shu HB (2012) The E3 ubiquitin ligase MARCH8 negatively regulates IL-1beta-induced NF-kappaB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation. Proc Natl Acad Sci U S A 109: 14128–14133. doi: 10.1073/pnas.1205246109
[26]
Fujita H, Iwabu Y, Tokunaga K, Tanaka Y (2013) Membrane-associated RING-CH (MARCH) 8 mediates the ubiquitination and lysosomal degradation of the transferrin receptor. J Cell Sci 126: 2798–2809. doi: 10.1242/jcs.119909
[27]
van de Kooij B, Verbrugge I, de Vries E, Gijsen M, Montserrat V, et al. (2013) Ubiquitination by the membrane-associated RING-CH-8 (MARCH-8) ligase controls steady-state cell surface expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor 1. J Biol Chem 288: 6617–6628. doi: 10.1074/jbc.m112.448209
[28]
Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, et al. (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286: 309–312. doi: 10.1126/science.286.5438.309
Ohmura-Hoshino M, Matsuki Y, Aoki M, Goto E, Mito M, et al. (2006) Inhibition of MHC class II expression and immune responses by c-MIR. J Immunol 177: 341–354. doi: 10.4049/jimmunol.177.1.341
[31]
Jahnke M, Trowsdale J, Kelly AP (2013) Ubiquitination of HLA-DO by MARCH family E3 ligases. Eur J Immunol 43: 1153–1161. doi: 10.1002/eji.201243043
[32]
Jahnke M, Trowsdale J, Kelly AP (2012) Structural requirements for recognition of major histocompatibility complex class II by membrane-associated RING-CH (MARCH) protein E3 ligases. J Biol Chem 287: 28779–28789. doi: 10.1074/jbc.m112.381541
[33]
Jahnke M, Trowsdale J, Kelly AP (2012) Ubiquitination of human leukocyte antigen (HLA)-DM by different membrane-associated RING-CH (MARCH) protein family E3 ligases targets different endocytic pathways. J Biol Chem 287: 7256–7264. doi: 10.1074/jbc.m111.305961
[34]
Eyster CA, Cole NB, Petersen S, Viswanathan K, Fruh K, et al. (2011) MARCH ubiquitin ligases alter the itinerary of clathrin-independent cargo from recycling to degradation. Mol Biol Cell 22: 3218–3230. doi: 10.1091/mbc.e10-11-0874
[35]
Danilova N, Steiner LA (2002) B cells develop in the zebrafish pancreas. Proc Natl Acad Sci U S A 99: 13711–13716. doi: 10.1073/pnas.212515999
[36]
Yogo K, Tojima H, Ohno JY, Ogawa T, Nakamura N, et al. (2012) Identification of SAMT family proteins as substrates of MARCH11 in mouse spermatids. Histochem Cell Biol 137: 53–65. doi: 10.1007/s00418-011-0887-y
[37]
Zhao B, Ito K, Iyengar PV, Hirose S, Nakamura N (2013) MARCH7 E3 ubiquitin ligase is highly expressed in developing spermatids of rats and its possible involvement in head and tail formation. Histochem Cell Biol 139: 447–460. doi: 10.1007/s00418-012-1043-z
[38]
Takeichi M (2011) Self-organization of animal tissues: cadherin-mediated processes. Dev Cell 21: 24–26. doi: 10.1016/j.devcel.2011.06.002
[39]
Solnica-Krezel L (2006) Gastrulation in zebrafish – all just about adhesion? Curr Opin Genet Dev 16: 433–441. doi: 10.1016/j.gde.2006.06.009
[40]
Montero JA, Carvalho L, Wilsch-Brauninger M, Kilian B, Mustafa C, et al. (2005) Shield formation at the onset of zebrafish gastrulation. Development 132: 1187–1198. doi: 10.1242/dev.01667
[41]
Nandadasa S, Tao Q, Menon NR, Heasman J, Wylie C (2009) N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements. Development 136: 1327–1338. doi: 10.1242/dev.031203
[42]
Song S, Eckerle S, Onichtchouk D, Marrs JA, Nitschke R, et al. (2013) Pou5f1-dependent EGF expression controls E-cadherin endocytosis, cell adhesion, and zebrafish epiboly movements. Dev Cell 24: 486–501. doi: 10.1016/j.devcel.2013.01.016
[43]
Kaido M, Wada H, Shindo M, Hayashi S (2009) Essential requirement for RING finger E3 ubiquitin ligase Hakai in early embryonic development of Drosophila. Genes Cells 14: 1067–1077. doi: 10.1111/j.1365-2443.2009.01335.x
[44]
Toyama R, O'Connell ML, Wright CV, Kuehn MR, Dawid IB (1995) Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development 121: 383–391.
[45]
Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, et al. (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236: 3088–3099. doi: 10.1002/dvdy.21343
[46]
Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, et al. (1999) Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98: 69–80. doi: 10.1016/s0092-8674(00)80607-8
[47]
Fang D, Kerppola TK (2004) Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc Natl Acad Sci U S A 101: 14782–14787. doi: 10.1073/pnas.0404445101