全部 标题 作者
关键词 摘要

PLOS ONE  2014 

Expanded Genetic Codes in Next Generation Sequencing Enable Decontamination and Mitochondrial Enrichment

DOI: 10.1371/journal.pone.0096492

Full-Text   Cite this paper   Add to My Lib


We have developed a PCR method, coined Déjà vu PCR, that utilizes six nucleotides in PCR with two methyl specific restriction enzymes that respectively digest these additional nucleotides. Use of this enzyme-and-nucleotide combination enables what we term a “DNA diode”, where DNA can advance in a laboratory in only one direction and cannot feedback into upstream assays. Here we describe aspects of this method that enable consecutive amplification with the introduction of a 5th and 6th base while simultaneously providing methylation dependent mitochondrial DNA enrichment. These additional nucleotides enable a novel DNA decontamination technique that generates ephemeral and easy to decontaminate DNA.


[1]  Longo MC, Berninger MS, Hartley JL (1990) Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93: 125–128. doi: 10.1016/0378-1119(90)90145-h
[2]  Wardle J, Burgers PM, Cann IK, Darley K, Heslop P, et al. (2008) Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya. Nucleic Acids Res 36: 705–711. doi: 10.1093/nar/gkm1023
[3]  McKernan KJ, Spangler J, Helbert Y, Zhang L, Tadigotla V (2013) DREAMing of a patent-free human genome for clinical sequencing. Nat Biotechnol 31: 884–887. doi: 10.1038/nbt.2703
[4]  Horton JR, Mabuchi MY, Cohen-Karni D, Zhang X, Griggs RM, et al. (2012) Structure and cleavage activity of the tetrameric MspJI DNA modification-dependent restriction endonuclease. Nucleic Acids Res 40: 9763–9773. doi: 10.1093/nar/gks719
[5]  Cohen-Karni D, Xu D, Apone L, Fomenkov A, Sun Z, et al. (2011) The MspJI family of modification-dependent restriction endonucleases for epigenetic studies. Proc Natl Acad Sci U S A 108: 11040–11045. doi: 10.1073/pnas.1018448108
[6]  Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324: 929–930. doi: 10.1126/science.1169786
[7]  Kraus TF, Globisch D, Wagner M, Eigenbrod S, Widmann D, et al. (2012) Low values of 5-hydroxymethylcytosine (5hmC), the “sixth base,” are associated with anaplasia in human brain tumors. Int J Cancer 131: 1577–1590. doi: 10.1002/ijc.27429
[8]  Munzel M, Globisch D, Bruckl T, Wagner M, Welzmiller V, et al. (2010) Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 49: 5375–5377. doi: 10.1002/anie.201002033
[9]  Munzel M, Globisch D, Carell T (2011) 5-Hydroxymethylcytosine, the sixth base of the genome. Angew Chem Int Ed Engl 50: 6460–6468. doi: 10.1002/anie.201101547
[10]  Jin SG, Wu X, Li AX, Pfeifer GP (2011) Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res 39: 5015–5024. doi: 10.1093/nar/gkr120
[11]  Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, et al. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324: 930–935. doi: 10.1126/science.1170116
[12]  Lee K, Hamm J, Whitworth K, Spate L, Park KW, et al. (2014) Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG. Dev Biol 386: 86–95. doi: 10.1016/j.ydbio.2013.11.024
[13]  Igartua C, Turner EH, Ng SB, Hodges E, Hannon GJ, et al. (2010) Targeted enrichment of specific regions in the human genome by array hybridization. Curr Protoc Hum Genet Chapter 18: Unit 18 13.
[14]  Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, et al. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461: 272–276. doi: 10.1038/nature08250
[15]  Peters BA, Kermani BG, Sparks AB, Alferov O, Hong P, et al. (2012) Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487: 190–195. doi: 10.1038/nature11236
[16]  Gilissen C, Arts HH, Hoischen A, Spruijt L, Mans DA, et al. (2010) Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet 87: 418–423. doi: 10.1016/j.ajhg.2010.08.004
[17]  Gilissen C, Hoischen A, Brunner HG, Veltman JA (2011) Unlocking Mendelian disease using exome sequencing. Genome Biol 12: 228. doi: 10.1186/gb-2011-12-9-228
[18]  Gilissen C, Hoischen A, Brunner HG, Veltman JA (2012) Disease gene identification strategies for exome sequencing. Eur J Hum Genet 20: 490–497. doi: 10.1038/ejhg.2011.258
[19]  Haack TB, Danhauser K, Haberberger B, Hoser J, Strecker V, et al. (2010) Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 42: 1131–1134. doi: 10.1038/ng.706
[20]  Klassen T, Davis C, Goldman A, Burgess D, Chen T, et al. (2011) Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 145: 1036–1048. doi: 10.1016/j.cell.2011.05.025
[21]  Tarnopolsky M, Meaney B, Robinson B, Sheldon K, Boles RG (2013) Severe infantile leigh syndrome associated with a rare mitochondrial ND6 mutation, m.14487T>C. Am J Med Genet A 161: 2020–2023. doi: 10.1002/ajmg.a.36000
[22]  Wang H, Guan S, Quimby A, Cohen-Karni D, Pradhan S, et al. (2011) Comparative characterization of the PvuRts1I family of restriction enzymes and their application in mapping genomic 5-hydroxymethylcytosine. Nucleic Acids Res 39: 9294–9305. doi: 10.1093/nar/gkr607
[23]  Zhang W, Cui H, Wong LJ (2012) Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin Chem 58: 1322–1331. doi: 10.1373/clinchem.2011.181438
[24]  Cui H, Li F, Chen D, Wang G, Truong CK, et al. Comprehensive next-generation sequence analyses of the entire mitochondrial genome reveal new insights into the molecular diagnosis of mitochondrial DNA disorders. Genet Med.
[25]  Falk MJ, Pierce EA, Consugar M, Xie MH, Guadalupe M, et al. (2012) Mitochondrial disease genetic diagnostics: optimized whole-exome analysis for all MitoCarta nuclear genes and the mitochondrial genome. Discov Med 14: 389–399.
[26]  Li M, Schroeder R, Ko A, Stoneking M (2012) Fidelity of capture-enrichment for mtDNA genome sequencing: influence of NUMTs. Nucleic Acids Res 40: e137. doi: 10.1093/nar/gks499
[27]  Damas J, Carneiro J, Goncalves J, Stewart JB, Samuels DC, et al. (2012) Mitochondrial DNA deletions are associated with non-B DNA conformations. Nucleic Acids Res 40: 7606–7621. doi: 10.1093/nar/gks500
[28]  Mita S, Rizzuto R, Moraes CT, Shanske S, Arnaudo E, et al. (1990) Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res 18: 561–567. doi: 10.1093/nar/18.3.561
[29]  Kreuder J, Repp R, Borkhardt A, Lampert F (1995) Rapid detection of mitochondrial deletions by long-distance polymerase chain reaction. Eur J Pediatr 154: 996. doi: 10.1007/bf01958647
[30]  Hong EE, Okitsu CY, Smith AD, Hsieh CL (2013) Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol Cell Biol 33: 2683–2690. doi: 10.1128/mcb.00220-13
[31]  Keller I, Bensasson D, Nichols RA (2007) Transition-transversion bias is not universal: a counter example from grasshopper pseudogenes. PLoS Genet 3: e22. doi: 10.1371/journal.pgen.0030022
[32]  Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6: e1000834. doi: 10.1371/journal.pgen.1000834
[33]  Bellizzi D, D'Aquila P, Scafone T, Giordano M, Riso V, et al. (2013) The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 20: 537–547. doi: 10.1093/dnares/dst029
[34]  Lay MJ, Wittwer CT (1997) Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem 43: 2262–2267.
[35]  Ririe KM, Rasmussen RP, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245: 154–160. doi: 10.1006/abio.1996.9916
[36]  Li J, Wang L, Mamon H, Kulke MH, Berbeco R, et al. (2008) Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med 14: 579–584. doi: 10.1038/nm1708
[37]  von Ahsen N, Wittwer CT, Schutz E (2001) Oligonucleotide melting temperatures under PCR conditions: nearest-neighbor corrections for Mg(2+), deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. Clin Chem 47: 1956–1961.
[38]  Peak MJ, Robb FT, Peak JG (1995) Extreme resistance to thermally induced DNA backbone breaks in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 177: 6316–6318.
[39]  McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303. doi: 10.1101/gr.107524.110
[40]  Nestor C, Ruzov A, Meehan R, Dunican D (2010) Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques 48: 317–319. doi: 10.2144/000113403
[41]  Holman CM (2012) Debunking the myth that whole-genome sequencing infringes thousands of gene patents. Nat Biotechnol 30: 240–244. doi: 10.1038/nbt.2146
[42]  Keith JM, Adams P, Bryant D, Cochran DA, Lala GH, et al. (2004) Algorithms for sequence analysis via mutagenesis. Bioinformatics 20: 2401–2410. doi: 10.1093/bioinformatics/bth258
[43]  Keith JM, Cochran DA, Lala GH, Adams P, Bryant D, et al. (2004) Unlocking hidden genomic sequence. Nucleic Acids Res 32: e35.
[44]  McMurray AA, Sulston JE, Quail MA (1998) Short-insert libraries as a method of problem solving in genome sequencing. Genome Res 8: 562–566.
[45]  Homer N, Szelinger S, Redman M, Duggan D, Tembe W, et al. (2008) Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet 4: e1000167. doi: 10.1371/journal.pgen.1000167
[46]  Trakadis YJ (2012) Patient-controlled encrypted genomic data: an approach to advance clinical genomics. BMC Med Genomics 5: 31. doi: 10.1186/1755-8794-5-31
[47]  Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP, et al. (2012) Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol 30: 1033–1036. doi: 10.1038/nbt.2403
[48]  Lalueza-Fox C, Gilbert MT (2011) Paleogenomics of archaic hominins. Curr Biol 21: R1002–1009. doi: 10.1016/j.cub.2011.11.021


comments powered by Disqus