All Title Author
Keywords Abstract

PLOS ONE  2014 

TGFβ Activated Kinase 1 (TAK1) at the Crossroad of B Cell Receptor and Toll-Like Receptor 9 Signaling Pathways in Human B Cells

DOI: 10.1371/journal.pone.0096381

Full-Text   Cite this paper   Add to My Lib

Abstract:

B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR), receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R) and the innate receptor, Toll-like receptor 9 (TLR9). However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF) and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs), ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1) is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.

References

[1]  Niiro H, Clark EA (2002) Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2: 945–956. doi: 10.1038/nri955
[2]  Grimaldi CM, Hicks R, Diamond B (2005) B cell selection and susceptibility to autoimmunity. J Immunol 174: 1775–1781. doi: 10.4049/jimmunol.174.4.1775
[3]  Peng SL (2005) Signaling in B cells via Toll-like receptors. Curr Opin Immunol 17: 230–236. doi: 10.1016/j.coi.2005.03.003
[4]  Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6: 823–835. doi: 10.1038/nri1957
[5]  Patke A, Mecklenbrauker I, Tarakhovsky A (2004) Survival signaling in resting B cells. Curr Opin Immunol 16: 251–255. doi: 10.1016/j.coi.2004.01.007
[6]  Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, et al. (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189: 1747–1756. doi: 10.1084/jem.189.11.1747
[7]  Treml JF, Hao Y, Stadanlick JE, Cancro MP (2009) The BLyS family: toward a molecular understanding of B cell homeostasis. Cell Biochem Biophys 53: 1–16. doi: 10.1007/s12013-008-9036-1
[8]  Nakano S, Morimoto S, Suzuki J, Nozawa K, Amano H, et al. (2008) Role of pathogenic auto-antibody production by Toll-like receptor 9 of B cells in active systemic lupus erythematosus. Rheumatology (Oxford) 47: 145–149. doi: 10.1093/rheumatology/kem327
[9]  Capolunghi F, Cascioli S, Giorda E, Rosado MM, Plebani A, et al. (2008) CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J Immunol 180: 800–808. doi: 10.4049/jimmunol.180.2.800
[10]  Craxton A, Draves KE, Gruppi A, Clark EA (2005) BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. J Exp Med 202: 1363–1374. doi: 10.1084/jem.20051283
[11]  Bossen C, Schneider P (2006) BAFF, APRIL and their receptors: structure, function and signaling. Semin Immunol 18: 263–275. doi: 10.1016/j.smim.2006.04.006
[12]  Khan WN (2009) B cell receptor and BAFF receptor signaling regulation of B cell homeostasis. J Immunol 183: 3561–3567. doi: 10.4049/jimmunol.0800933
[13]  Fu L, Lin-Lee YC, Pham LV, Tamayo AT, Yoshimura LC, et al. (2009) BAFF-R promotes cell proliferation and survival through interaction with IKKbeta and NF-kappaB/c-Rel in the nucleus of normal and neoplastic B-lymphoid cells. Blood 113: 4627–4636. doi: 10.1182/blood-2008-10-183467
[14]  Schneider P, Tschopp J (2003) BAFF and the regulation of B cell survival. Immunol Lett 88: 57–62. doi: 10.1016/s0165-2478(03)00050-6
[15]  Binard A, Le Pottier L, Saraux A, Devauchelle-Pensec V, Pers JO, et al. (2008) Does the BAFF dysregulation play a major role in the pathogenesis of systemic lupus erythematosus? J Autoimmun 30: 63–67. doi: 10.1016/j.jaut.2007.11.001
[16]  Swee LK, Tardivel A, Schneider P, Rolink A (2010) Rescue of the mature B cell compartment in BAFF-deficient mice by treatment with recombinant Fc-BAFF. Immunol Lett 131: 40–48. doi: 10.1016/j.imlet.2010.03.007
[17]  Carter LM, Isenberg DA, Ehrenstein MR (2013) Elevated serum B-cell activating factor (BAFF/BLyS) is associated with rising anti-dsDNA antibody levels and flare following B-cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum.
[18]  Ramakrishnan P, Wang W, Wallach D (2004) Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity 21: 477–489. doi: 10.1016/j.immuni.2004.08.009
[19]  Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A (2006) BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med 203: 2551–2562. doi: 10.1084/jem.20060990
[20]  Otipoby KL, Sasaki Y, Schmidt-Supprian M, Patke A, Gareus R, et al. (2008) BAFF activates Akt and Erk through BAFF-R in an IKK1-dependent manner in primary mouse B cells. Proc Natl Acad Sci U S A 105: 12435–12438. doi: 10.1073/pnas.0805460105
[21]  Yamada T, Zhang K, Yamada A, Zhu D, Saxon A (2005) B lymphocyte stimulator activates p38 mitogen-activated protein kinase in human Ig class switch recombination. Am J Respir Cell Mol Biol 32: 388–394. doi: 10.1165/rcmb.2004-0317oc
[22]  Kim HA, Seo GY, Kim PH (2011) Macrophage-derived BAFF induces AID expression through the p38MAPK/CREB and JNK/AP-1 pathways. J Leukoc Biol 89: 393–398. doi: 10.1189/jlb.1209787
[23]  Su TT, Guo B, Kawakami Y, Sommer K, Chae K, et al. (2002) PKC-beta controls I kappa B kinase lipid raft recruitment and activation in response to BCR signaling. Nat Immunol 3: 780–786. doi: 10.1038/ni823
[24]  Shinohara H, Kurosaki T (2009) Comprehending the complex connection between PKCbeta, TAK1, and IKK in BCR signaling. Immunol Rev 232: 300–318. doi: 10.1111/j.1600-065x.2009.00836.x
[25]  Adhikari A, Xu M, Chen ZJ (2007) Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26: 3214–3226. doi: 10.1038/sj.onc.1210413
[26]  Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, et al. (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412: 346–351. doi: 10.1038/35085597
[27]  Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, et al. (1999) The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398: 252–256.
[28]  Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13: 816–825. doi: 10.1038/sj.cdd.4401850
[29]  He B, Santamaria R, Xu W, Cols M, Chen K, et al. (2010) The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat Immunol 11: 836–845. doi: 10.1038/ni.1914
[30]  Schuman J, Chen Y, Podd A, Yu M, Liu HH, et al. (2009) A critical role of TAK1 in B-cell receptor-mediated nuclear factor kappaB activation. Blood 113: 4566–4574. doi: 10.1182/blood-2008-08-176057
[31]  Chen ZJ (2012) Ubiquitination in signaling to and activation of IKK. Immunol Rev 246: 95–106. doi: 10.1111/j.1600-065x.2012.01108.x
[32]  Wan YY, Chi H, Xie M, Schneider MD, Flavell RA (2006) The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat Immunol 7: 851–858. doi: 10.1038/ni1355
[33]  Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, et al. (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6: 1087–1095. doi: 10.1038/ni1255
[34]  Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, et al. (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416: 603–607. doi: 10.1038/416603a
[35]  Yu CC, Mamchak AA, DeFranco AL (2003) Signaling mutations and autoimmunity. Curr Dir Autoimmun 6: 61–88. doi: 10.1159/000066856
[36]  McGaha TL, Sorrentino B, Ravetch JV (2005) Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307: 590–593. doi: 10.1126/science.1105160
[37]  Thien M, Phan TG, Gardam S, Amesbury M, Basten A, et al. (2004) Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20: 785–798. doi: 10.1016/j.immuni.2004.05.010
[38]  Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A (2012) Integration of B cell responses through Toll-like receptors and antigen receptors. Nat Rev Immunol 12: 282–294. doi: 10.1038/nri3190
[39]  Hancz A, Koncz G, Szili D, Sarmay G (2012) TLR9-mediated signals rescue B-cells from Fas-induced apoptosis via inactivation of caspases. Immunol Lett 143: 77–84. doi: 10.1016/j.imlet.2012.02.006
[40]  Biro A, Sarmay G, Rozsnyay Z, Klein E, Gergely J (1992) A trypsin-like serine protease activity on activated human B cells and various B cell lines. Eur J Immunol 22: 2547–2553. doi: 10.1002/eji.1830221013
[41]  Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65: 109–121. doi: 10.1016/0022-1759(83)90308-3
[42]  Duddy ME, Alter A, Bar-Or A (2004) Distinct profiles of human B cell effector cytokines: a role in immune regulation? J Immunol 172: 3422–3427. doi: 10.4049/jimmunol.172.6.3422
[43]  Agrawal S, Gupta S (2011) TLR1/2, TLR7, and TLR9 signals directly activate human peripheral blood naive and memory B cell subsets to produce cytokines, chemokines, and hematopoietic growth factors. J Clin Immunol 31: 89–98. doi: 10.1007/s10875-010-9456-8
[44]  Poeck H, Wagner M, Battiany J, Rothenfusser S, Wellisch D, et al. (2004) Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood 103: 3058–3064. doi: 10.1182/blood-2003-08-2972
[45]  Taniguchi F, Harada T, Miyakoda H, Iwabe T, Deura I, et al. (2009) TAK1 activation for cytokine synthesis and proliferation of endometriotic cells. Mol Cell Endocrinol 307: 196–204. doi: 10.1016/j.mce.2009.04.012
[46]  Arpin C, Banchereau J, Liu YJ (1997) Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing. J Exp Med 186: 931–940. doi: 10.1084/jem.186.6.931
[47]  Geffroy-Luseau A, Chiron D, Descamps G, Jego G, Amiot M, et al. (2011) TLR9 ligand induces the generation of CD20+ plasmablasts and plasma cells from CD27+ memory B-cells. Front Immunol 2: 83. doi: 10.3389/fimmu.2011.00083
[48]  Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, et al. (2002) DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 3: 822–829. doi: 10.1038/ni829
[49]  Iwata S, Yamaoka K, Niiro H, Nakano K, Wang SP, et al.. (2012) Amplification of Toll-like receptor-mediated signaling through spleen tyrosine kinase in human B-cell activation. J Allergy Clin Immunol 129: : 1594–1601 e1592.
[50]  Yi AK, Yoon JG, Krieg AM (2003) Convergence of CpG DNA- and BCR-mediated signals at the c-Jun N-terminal kinase and NF-kappaB activation pathways: regulation by mitogen-activated protein kinases. Int Immunol 15: 577–591. doi: 10.1093/intimm/dxg058
[51]  Kenny EF, Quinn SR, Doyle SL, Vink PM, van Eenennaam H, et al. (2013) Bruton's tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLoS One 8: e74103. doi: 10.1371/journal.pone.0074103
[52]  Cancro MP (2009) Signalling crosstalk in B cells: managing worth and need. Nat Rev Immunol 9: 657–661. doi: 10.1038/nri2621
[53]  Schweighoffer E, Vanes L, Nys J, Cantrell D, McCleary S, et al. (2013) The BAFF receptor transduces survival signals by co-opting the B cell receptor signaling pathway. Immunity 38: 475–488. doi: 10.1016/j.immuni.2012.11.015
[54]  Davidson A (2010) Targeting BAFF in autoimmunity. Curr Opin Immunol 22: 732–739. doi: 10.1016/j.coi.2010.09.010
[55]  Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745. doi: 10.1038/35047123
[56]  Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, et al. (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485: 251–255. doi: 10.1038/nature10992
[57]  Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, et al. (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270: 2008–2011. doi: 10.1126/science.270.5244.2008
[58]  Sakurai H (2012) Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci 33: 522–530. doi: 10.1016/j.tips.2012.06.007
[59]  Wu J, Powell F, Larsen NA, Lai Z, Byth KF, et al. (2013) Mechanism and in vitro pharmacology of TAK1 inhibition by (5Z)-7-Oxozeaenol. ACS Chem Biol 8: 643–650. doi: 10.1021/cb3005897
[60]  Shinners NP, Carlesso G, Castro I, Hoek KL, Corn RA, et al. (2007) Bruton's tyrosine kinase mediates NF-kappa B activation and B cell survival by B cell-activating factor receptor of the TNF-R family. J Immunol 179: 3872–3880. doi: 10.4049/jimmunol.179.6.3872
[61]  O'Garra A, Stapleton G, Dhar V, Pearce M, Schumacher J, et al. (1990) Production of cytokines by mouse B cells: B lymphomas and normal B cells produce interleukin 10. Int Immunol 2: 821–832. doi: 10.1093/intimm/2.9.821
[62]  Pistoia V (1997) Production of cytokines by human B cells in health and disease. Immunol Today 18: 343–350. doi: 10.1016/s0167-5699(97)01080-3
[63]  Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, et al. (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1: 475–482.
[64]  Lund FE, Randall TD (2010) Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol 10: 236–247. doi: 10.1038/nri2729
[65]  Kalampokis I, Yoshizaki A, Tedder TF (2013) IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res Ther 15 Suppl 1S1. doi: 10.1186/ar3907
[66]  Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30: 221–241. doi: 10.1146/annurev-immunol-020711-074934
[67]  Jackson SM, Harp N, Patel D, Wulf J, Spaeth ED, et al. (2009) Key developmental transitions in human germinal center B cells are revealed by differential CD45RB expression. Blood 113: 3999–4007. doi: 10.1182/blood-2008-03-145979
[68]  Lin L, Gerth AJ, Peng SL (2004) CpG DNA redirects class-switching towards “Th1-like” Ig isotype production via TLR9 and MyD88. Eur J Immunol 34: 1483–1487. doi: 10.1002/eji.200324736
[69]  He B, Qiao X, Cerutti A (2004) CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol 173: 4479–4491. doi: 10.4049/jimmunol.173.7.4479
[70]  Jegerlehner A, Maurer P, Bessa J, Hinton HJ, Kopf M, et al. (2007) TLR9 signaling in B cells determines class switch recombination to IgG2a. J Immunol 178: 2415–2420. doi: 10.4049/jimmunol.178.4.2415
[71]  Zikherman J, Parameswaran R, Weiss A (2012) Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 489: 160–164. doi: 10.1038/nature11311
[72]  Galligan CL, Siebert JC, Siminovitch KA, Keystone EC, Bykerk V, et al. (2009) Multiparameter phospho-flow analysis of lymphocytes in early rheumatoid arthritis: implications for diagnosis and monitoring drug therapy. PLoS One 4: e6703. doi: 10.1371/journal.pone.0006703
[73]  Wong CK, Wong PT, Tam LS, Li EK, Chen DP, et al. (2009) Activation profile of intracellular mitogen-activated protein kinases in peripheral lymphocytes of patients with systemic lupus erythematosus. J Clin Immunol 29: 738–746. doi: 10.1007/s10875-009-9318-4

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal