All Title Author
Keywords Abstract

PLOS ONE  2014 

Growth Factor Independence 1b (Gfi1b) Is Important for the Maturation of Erythroid Cells and the Regulation of Embryonic Globin Expression

DOI: 10.1371/journal.pone.0096636

Full-Text   Cite this paper   Add to My Lib

Abstract:

Growth factor independence 1b (GFI1B) is a DNA binding repressor of transcription with vital functions in hematopoiesis. Gfi1b-null embryos die at midgestation very likely due to defects in erythro- and megakaryopoiesis. To analyze the full functionality of Gfi1b, we used conditionally deficient mice that harbor floxed Gfi1b alleles and inducible (Mx-Cre, Cre-ERT) or erythroid specific (EpoR-Cre) Cre expressing transgenes. In contrast to the germline knockout, EpoR-Cre mediated erythroid specific ablation of Gfi1b allows full gestation, but causes perinatal lethality with very few mice surviving to adulthood. Both the embryonic deletion of Gfi1b by EpoR-Cre and the deletion in adult mice by Mx-Cre or Cre-ERT leads to reduced numbers of erythroid precursors, perturbed and delayed erythroid maturation, anemia and extramedullary erythropoiesis. Global expression analyses showed that the Hba-x, Hbb-bh1 and Hbb-y embryonic globin genes were upregulated in Gfi1b deficient TER119+ fetal liver cells over the gestation period from day 12.5–17.5 p.c. and an increased level of Hbb-bh1 and Hbb-y embryonic globin gene expression was even maintained in adult Gfi1b deficient mice. While the expression of Bcl11a, a regulator of embryonic globin expression was not affected by Gfi1b deficiency, the expression of Gata1 was reduced and the expression of Sox6, also involved in globin switch, was almost entirely lost when Gfi1b was absent. These findings establish Gfi1b as a regulator of embryonic globin expression and embryonic and adult erythroid maturation.

References

[1]  Vassen L, Okayama T, Moroy T (2007) Gfi1b:green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1. Blood 109: 2356–2364. doi: 10.1182/blood-2006-06-030031
[2]  Fiolka K, Hertzano R, Vassen L, Zeng H, Hermesh O, et al. (2006) Gfi1 and Gfi1b act equivalently in haematopoiesis, but have distinct, non-overlapping functions in inner ear development. EMBO Rep 7: 326–333. doi: 10.1038/sj.embor.7400618
[3]  Yucel R, Kosan C, Heyd F, Moroy T (2004) Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development. J Biol Chem 279: 40906–40917. doi: 10.1074/jbc.m400808200
[4]  Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT, et al. (2003) Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18: 109–120. doi: 10.1016/s1074-7613(02)00501-0
[5]  Karsunky H, Zeng H, Schmidt T, Zevnik B, Kluge R, et al. (2002) Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 30: 295–300. doi: 10.1038/ng831
[6]  Saleque S, Cameron S, Orkin SH (2002) The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev 16: 301–306. doi: 10.1101/gad.959102
[7]  Yucel R, Karsunky H, Klein-Hitpass L, Moroy T (2003) The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit+ T cell progenitors and CD4/CD8 lineage decision in the thymus. J Exp Med 197: 831–844. doi: 10.1084/jem.20021417
[8]  Zeng H, Yucel R, Kosan C, Klein-Hitpass L, Moroy T (2004) Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J 23: 4116–4125. doi: 10.1038/sj.emboj.7600419
[9]  Khandanpour C, Sharif-Askari E, Vassen L, Gaudreau MC, Zhu J, et al. (2010) Evidence that growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood 116: 5149–5161. doi: 10.1182/blood-2010-04-280305
[10]  Vassen L, Duhrsen U, Kosan C, Zeng H, Moroy T (2012) Growth factor independence 1 (Gfi1) regulates cell-fate decision of a bipotential granulocytic-monocytic precursor defined by expression of Gfi1 and CD48. Am J Blood Res 2: 228–242.
[11]  Schulz D, Vassen L, Chow KT, McWhirter SM, Amin RH, et al. (2012) Gfi1b negatively regulates Rag expression directly and via the repression of FoxO1. J Exp Med 209: 187–199. doi: 10.1084/jem.20110645
[12]  Koldehoff M, Zakrzewski JL, Beelen DW, Elmaagacli AH (2013) Additive antileukemia effects by GFI1B- and BCR-ABL-specific siRNA in advanced phase chronic myeloid leukemic cells. Cancer Gene Ther 20: 421–427. doi: 10.1038/cgt.2013.31
[13]  Kok CH, Watkins DB, Leclercq T, D'Andrea RJ, Hughes TP, et al. (2013) Low GFI1 expression in white blood cells of CP-CML patients at diagnosis is strongly associated with subsequent blastic transformation. Leukemia 27: 1427–1430. doi: 10.1038/leu.2013.47
[14]  Khandanpour C, Phelan JD, Vassen L, Schutte J, Chen R, et al. (2013) Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 23: 200–214. doi: 10.1016/j.ccr.2013.01.011
[15]  Khandanpour C, Krongold J, Schutte J, Bouwman F, Vassen L, et al. (2012) The human GFI136N variant induces epigenetic changes at the Hoxa9 locus and accelerates K-RAS driven myeloproliferative disorder in mice. Blood 120: 4006–4017. doi: 10.1182/blood-2011-02-334722
[16]  D'Souza S, del Prete D, Jin S, Sun Q, Huston AJ, et al. (2011) Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood 118: 6871–6880. doi: 10.1182/blood-2011-04-346775
[17]  Khandanpour C, Kosan C, Gaudreau MC, Duhrsen U, Hebert J, et al. (2011) Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease. Stem Cells 29: 376–385. doi: 10.1002/stem.575
[18]  Khandanpour C, Thiede C, Valk PJ, Sharif-Askari E, Nuckel H, et al. (2010) A variant allele of Growth Factor Independence 1 (GFI1) is associated with acute myeloid leukemia. Blood 115: 2462–2472. doi: 10.1182/blood-2009-08-239822
[19]  Vassen L, Khandanpour C, Ebeling P, van der Reijden BA, Jansen JH, et al. (2009) Growth factor independent 1b (Gfi1b) and a new splice variant of Gfi1b are highly expressed in patients with acute and chronic leukemia. Int J Hematol 89: 422–430. doi: 10.1007/s12185-009-0286-5
[20]  Xu W, Kee BL (2007) Growth factor independent 1B (Gfi1b) is an E2A target gene that modulates Gata3 in T-cell lymphomas. Blood 109: 4406–4414. doi: 10.1182/blood-2006-08-043331
[21]  Schmidt T, Karsunky H, Gau E, Zevnik B, Elsasser HP, et al. (1998) Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene 17: 2661–2667. doi: 10.1038/sj.onc.1202191
[22]  Zornig M, Schmidt T, Karsunky H, Grzeschiczek A, Moroy T (1996) Zinc finger protein GFI-1 cooperates with myc and pim-1 in T-cell lymphomagenesis by reducing the requirements for IL-2. Oncogene 12: 1789–1801. doi: 10.1038/sj.onc.1202191
[23]  Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, et al. (2003) Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34: 308–312. doi: 10.1038/ng1170
[24]  Osawa M, Yamaguchi T, Nakamura Y, Kaneko S, Onodera M, et al. (2002) Erythroid expansion mediated by the Gfi-1B zinc finger protein: role in normal hematopoiesis. Blood 100: 2769–2777. doi: 10.1182/blood-2002-01-0182
[25]  Randrianarison-Huetz V, Laurent B, Bardet V, Blobe GC, Huetz F, et al. (2010) Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage. Blood 115: 2784–2795. doi: 10.1182/blood-2009-09-241752
[26]  Zini R, Norfo R, Ferrari F, Bianchi E, Salati S, et al. (2012) Valproic acid triggers erythro/megakaryocyte lineage decision through induction of GFI1B and MLLT3 expression. Exp Hematol 40: 1043–1054 e1046.
[27]  Vassen L, Fiolka K, Mahlmann S, Moroy T (2005) Direct transcriptional repression of the genes encoding the zinc-finger proteins Gfi1b and Gfi1 by Gfi1b. Nucleic Acids Res 33: 987–998. doi: 10.1093/nar/gki243
[28]  Doan LL, Porter SD, Duan Z, Flubacher MM, Montoya D, et al. (2004) Targeted transcriptional repression of Gfi1 by GFI1 and GFI1B in lymphoid cells. Nucleic Acids Res 32: 2508–2519. doi: 10.1093/nar/gkh570
[29]  Huang DY, Kuo YY, Lai JS, Suzuki Y, Sugano S, et al. (2004) GATA-1 and NF-Y cooperate to mediate erythroid-specific transcription of Gfi-1B gene. Nucleic Acids Res 32: 3935–3946. doi: 10.1093/nar/gkh719
[30]  Laurent B, Randrianarison-Huetz V, Marechal V, Mayeux P, Dusanter-Fourt I, et al. (2010) High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GFI1B transcription. Blood 115: 687–695. doi: 10.1182/blood-2009-06-230094
[31]  Rodriguez P, Bonte E, Krijgsveld J, Kolodziej KE, Guyot B, et al. (2005) GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J 24: 2354–2366. doi: 10.1038/sj.emboj.7600702
[32]  Kuo YY, Chang ZF (2007) GATA-1 and Gfi-1B interplay to regulate Bcl-xL transcription. Mol Cell Biol 27: 4261–4272. doi: 10.1128/mcb.02212-06
[33]  Huang DY, Kuo YY, Chang ZF (2005) GATA-1 mediates auto-regulation of Gfi-1B transcription in K562 cells. Nucleic Acids Res 33: 5331–5342. doi: 10.1093/nar/gki838
[34]  Hernandez A, Villegas A, Anguita E (2010) Human promoter mutations unveil Oct-1 and GATA-1 opposite action on Gfi1b regulation. Ann Hematol 89: 759–765. doi: 10.1007/s00277-009-0900-x
[35]  Jegalian AG, Wu H (2002) Regulation of Socs gene expression by the proto-oncoprotein GFI-1B: two routes for STAT5 target gene induction by erythropoietin. J Biol Chem 277: 2345–2352. doi: 10.1074/jbc.m105575200
[36]  Sprussel A, Schulte JH, Weber S, Necke M, Handschke K, et al. (2012) Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia 26: 2039–2051. doi: 10.1038/leu.2012.157
[37]  Laurent B, Randrianarison-Huetz V, Frisan E, Andrieu-Soler C, Soler E, et al. (2012) A short Gfi-1B isoform controls erythroid differentiation by recruiting the LSD1-CoREST complex through the dimethylation of its SNAG domain. J Cell Sci 125: 993–1002. doi: 10.1242/jcs.095877
[38]  Chowdhury AH, Ramroop JR, Upadhyay G, Sengupta A, Andrzejczyk A, et al. (2013) Differential transcriptional regulation of meis1 by Gfi1b and its co-factors LSD1 and CoREST. PLoS One 8: e53666. doi: 10.1371/journal.pone.0053666
[39]  Heinrich AC, Pelanda R, Klingmuller U (2004) A mouse model for visualization and conditional mutations in the erythroid lineage. Blood 104: 659–666. doi: 10.1182/blood-2003-05-1442
[40]  Emig D, Salomonis N, Baumbach J, Lengauer T, Conklin BR, et al. (2010) AltAnalyze and DomainGraph: analyzing and visualizing exon expression data. Nucleic Acids Res 38: W755–762. doi: 10.1093/nar/gkq405
[41]  Joshi A, Hannah R, Diamanti E, Gottgens B (2013) Gene set control analysis predicts hematopoietic control mechanisms from genome-wide transcription factor binding data. Exp Hematol 41: 354–366 e314.
[42]  Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269: 1427–1429. doi: 10.1126/science.7660125
[43]  Ogunshola OO, Bogdanova AY (2013) Epo and non-hematopoietic cells: what do we know? Methods Mol Biol 982: 13–41. doi: 10.1007/978-1-62703-308-4_2
[44]  Zhu X, Wang Y, Pi W, Liu H, Wickrema A, et al. (2012) NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human gamma-globin gene. PLoS One 7: e47175. doi: 10.1371/journal.pone.0047175
[45]  Xu J, Sankaran VG, Ni M, Menne TF, Puram RV, et al. (2010) Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev 24: 783–798. doi: 10.1101/gad.1897310
[46]  Ikonomi P, Noguchi CT, Miller W, Kassahun H, Hardison R, et al. (2000) Levels of GATA-1/GATA-2 transcription factors modulate expression of embryonic and fetal hemoglobins. Gene 261: 277–287. doi: 10.1016/s0378-1119(00)00510-2
[47]  Suzuki M, Kobayashi-Osaki M, Tsutsumi S, Pan X, Ohmori S, et al. (2013) GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation. Genes Cells.
[48]  Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J, et al. (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7: 532–544. doi: 10.1016/j.stem.2010.07.016
[49]  Gellert P, Teranishi M, Jenniches K, De Gaspari P, John D, et al. (2012) Gene Array Analyzer: alternative usage of gene arrays to study alternative splicing events. Nucleic Acids Res 40: 2414–2425. doi: 10.1093/nar/gkr1110

Full-Text

comments powered by Disqus