All Title Author
Keywords Abstract

PLOS ONE  2014 

The Role of H1 Linker Histone Subtypes in Preserving the Fidelity of Elaboration of Mesendodermal and Neuroectodermal Lineages during Embryonic Development

DOI: 10.1371/journal.pone.0096858

Full-Text   Cite this paper   Add to My Lib


H1 linker histone proteins are essential for the structural and functional integrity of chromatin and for the fidelity of additional epigenetic modifications. Deletion of H1c, H1d and H1e in mice leads to embryonic lethality by mid-gestation with a broad spectrum of developmental alterations. To elucidate the cellular and molecular mechanisms underlying H1 linker histone developmental functions, we analyzed embryonic stem cells (ESCs) depleted of H1c, H1d and H1e subtypes (H1-KO ESCs) by utilizing established ESC differentiation paradigms. Our study revealed that although H1-KO ESCs continued to express core pluripotency genes and the embryonic stem cell markers, alkaline phosphatase and SSEA1, they exhibited enhanced cell death during embryoid body formation and during specification of mesendoderm and neuroectoderm. In addition, we demonstrated deregulation in the developmental programs of cardiomyocyte, hepatic and pancreatic lineage elaboration. Moreover, ectopic neurogenesis and cardiomyogenesis occurred during endoderm-derived pancreatic but not hepatic differentiation. Furthermore, neural differentiation paradigms revealed selective impairments in the specification and maturation of glutamatergic and dopaminergic neurons with accelerated maturation of glial lineages. These impairments were associated with deregulation in the expression profiles of pro-neural genes in dorsal and ventral forebrain-derived neural stem cell species. Taken together, these experimental observations suggest that H1 linker histone proteins are critical for the specification, maturation and fidelity of organ-specific cellular lineages derived from the three cardinal germ layers.


[1]  Zlatanova J, Leuba SH, van Holde K (1999) Chromatin structure revisited. Crit Rev Eukaryot Gene Expr 9: 245–255. doi: 10.1615/critreveukargeneexpr.v9.i3-4.90
[2]  Harvey AC, Downs JA (2004) What functions do linker histones provide? Mol Microbiol 53: 771–775. doi: 10.1111/j.1365-2958.2004.04195.x
[3]  Happel N, Doenecke D (2009) Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431: 1–12. doi: 10.1016/j.gene.2008.11.003
[4]  Trollope AF, Sapojnikova N, Thorne AW, Crane-Robinson C, Myers FA (2010) Linker histone subtypes are not generalized gene repressors. Biochim Biophys Acta 1799: 642–652. doi: 10.1016/j.bbagrm.2010.08.007
[5]  Xiao B, Freedman BS, Miller KE, Heald R, Marko JF (2012) Histone H1 compacts DNA under force and during chromatin assembly. Mol Biol Cell 23: 4864–4871. doi: 10.1091/mbc.e12-07-0518
[6]  Harshman SW, Young NL, Parthun MR, Freitas MA (2013) H1 histones: current perspectives and challenges. Nucleic Acids Res.
[7]  Wierzbicki AT, Jerzmanowski A (2005) Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation. Genetics 169: 997–1008. doi: 10.1534/genetics.104.031997
[8]  Barra JL, Rhounim L, Rossignol JL, Faugeron G (2000) Histone H1 is dispensable for methylation-associated gene silencing in Ascobolus immersus and essential for long life span. Mol Cell Biol 20: 61–69. doi: 10.1128/mcb.20.1.61-69.2000
[9]  Sirotkin AM, Edelmann W, Cheng G, Klein-Szanto A, Kucherlapati R, et al. (1995) Mice develop normally without the H1(0) linker histone. Proc Natl Acad Sci U S A 92: 6434–6438. doi: 10.1073/pnas.92.14.6434
[10]  Fantz DA, Hatfield WR, Horvath G, Kistler MK, Kistler WS (2001) Mice with a targeted disruption of the H1t gene are fertile and undergo normal changes in structural chromosomal proteins during spermiogenesis. Biol Reprod 64: 425–431. doi: 10.1095/biolreprod64.2.425
[11]  Lin Q, Sirotkin A, Skoultchi AI (2000) Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol Cell Biol 20: 2122–2128. doi: 10.1128/mcb.20.6.2122-2128.2000
[12]  Fan Y, Nikitina T, Morin-Kensicki EM, Zhao J, Magnuson TR, et al. (2003) H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol Cell Biol 23: 4559–4572. doi: 10.1128/mcb.23.13.4559-4572.2003
[13]  Desbaillets I, Ziegler U, Groscurth P, Gassmann M (2000) Embryoid bodies: an in vitro model of mouse embryogenesis. Exp Physiol 85: 645–651. doi: 10.1017/s0958067000021047
[14]  Fan Y, Nikitina T, Zhao J, Fleury TJ, Bhattacharyya R, et al. (2005) Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123: 1199–1212. doi: 10.1016/j.cell.2005.10.028
[15]  Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, et al. (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10: 105–116. doi: 10.1016/j.devcel.2005.10.017
[16]  Zhang Y, Cooke M, Panjwani S, Cao K, Krauth B, et al. (2012) Histone h1 depletion impairs embryonic stem cell differentiation. PLoS Genet 8: e1002691. doi: 10.1371/journal.pgen.1002691
[17]  Koike M, Sakaki S, Amano Y, Kurosawa H (2007) Characterization of embryoid bodies of mouse embryonic stem cells formed under various culture conditions and estimation of differentiation status of such bodies. J Biosci Bioeng 104: 294–299. doi: 10.1263/jbb.104.294
[18]  Nagy A, Gertsenstein M, Vintersten K, Behringer R (2006) Differentiating Embryonic Stem (ES) Cells into Embryoid Bodies. CSH Protoc 2006.
[19]  Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10: 91–103. doi: 10.1038/nrm2618
[20]  Thomson M, Liu SJ, Zou LN, Smith Z, Meissner A, et al. (2011) Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145: 875–889. doi: 10.1016/j.cell.2011.05.017
[21]  Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59: 89–102. doi: 10.1016/0925-4773(96)00572-2
[22]  Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21: 183–186. doi: 10.1038/nbt780
[23]  Ying QL, Smith AG (2003) Defined conditions for neural commitment and differentiation. Methods Enzymol 365: 327–341. doi: 10.1016/s0076-6879(03)65023-8
[24]  Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35: 567–576. doi: 10.1002/jnr.490350513
[25]  Fassler R, Rohwedel J, Maltsev V, Bloch W, Lentini S, et al. (1996) Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J Cell Sci 109 (Pt 13): 2989–2999.
[26]  Yamashita JK (2004) Differentiation and diversification of vascular cells from embryonic stem cells. Int J Hematol 80: 1–6. doi: 10.1532/ijh97.04043
[27]  Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, et al. (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91: 189–201. doi: 10.1161/01.res.0000027865.61704.32
[28]  Hamazaki T, Iiboshi Y, Oka M, Papst PJ, Meacham AM, et al. (2001) Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett 497: 15–19. doi: 10.1016/s0014-5793(01)02423-1
[29]  Schroeder IS, Rolletschek A, Blyszczuk P, Kania G, Wobus AM (2006) Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat Protoc 1: 495–507. doi: 10.1038/nprot.2006.71
[30]  Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes Dev 22: 1998–2021. doi: 10.1101/gad.1670808
[31]  Bustin M, Catez F, Lim JH (2005) The dynamics of histone H1 function in chromatin. Mol Cell 17: 617–620. doi: 10.1016/j.molcel.2005.02.019
[32]  Terme JM, Sese B, Millan-Arino L, Mayor R, Izpisua Belmonte JC, et al. (2011) Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J Biol Chem 286: 35347–35357. doi: 10.1074/jbc.m111.281923
[33]  Orkin SH, Hochedlinger K (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145: 835–850. doi: 10.1016/j.cell.2011.05.019
[34]  Harikumar A, Meshorer E (2013) Measuring the dynamics of chromatin proteins during differentiation. Methods Mol Biol 1042: 173–180. doi: 10.1007/978-1-62703-526-2_12
[35]  Keenen B, de la Serna IL (2009) Chromatin remodeling in embryonic stem cells: regulating the balance between pluripotency and differentiation. J Cell Physiol 219: 1–7. doi: 10.1002/jcp.21654
[36]  Zwaka TP (2006) Breathing chromatin in pluripotent stem cells. Dev Cell 10: 1–2. doi: 10.1016/j.devcel.2005.12.007
[37]  Levasseur DN, Wang J, Dorschner MO, Stamatoyannopoulos JA, Orkin SH (2008) Oct4 dependence of chromatin structure within the extended Nanog locus in ES cells. Genes Dev 22: 575–580. doi: 10.1101/gad.1606308
[38]  Nguyen GD, Gokhan S, Molero AE, Mehler MF (2013) Selective roles of normal and mutant huntingtin in neural induction and early neurogenesis. PLoS One 8: e64368. doi: 10.1371/journal.pone.0064368
[39]  Nguyen GD, Molero AE, Gokhan S, Mehler MF (2013) Functions of Huntingtin in Germ Layer Specification and Organogenesis. PLoS One 8: e72698. doi: 10.1371/journal.pone.0072698
[40]  Dodd J (1992) Mesodermal control of neural cell identity in vertebrates. Curr Opin Neurobiol 2: 3–8. doi: 10.1016/0959-4388(92)90153-c
[41]  Zaret KS (2001) Hepatocyte differentiation: from the endoderm and beyond. Curr Opin Genet Dev 11: 568–574. doi: 10.1016/s0959-437x(00)00234-3
[42]  Lee H, Habas R, Abate-Shen C (2004) MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304: 1675–1678. doi: 10.1126/science.1098096
[43]  Aquino JB, Marmigere F, Lallemend F, Lundgren TK, Villar MJ, et al. (2008) Differential expression and dynamic changes of murine NEDD9 in progenitor cells of diverse tissues. Gene Expr Patterns 8: 217–226. doi: 10.1016/j.gep.2008.01.001
[44]  Lennox RW, Cohen LH (1983) The histone H1 complements of dividing and nondividing cells of the mouse. J Biol Chem 258: 262–268.
[45]  Pina B, Martinez P, Suau P (1987) Changes in H1 complement in differentiating rat-brain cortical neurons. Eur J Biochem 164: 71–76. doi: 10.1111/j.1432-1033.1987.tb10994.x
[46]  Wang ZF, Sirotkin AM, Buchold GM, Skoultchi AI, Marzluff WF (1997) The mouse histone H1 genes: gene organization and differential regulation. J Mol Biol 271: 124–138. doi: 10.1006/jmbi.1997.1166
[47]  Clausell J, Happel N, Hale TK, Doenecke D, Beato M (2009) Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS One 4: e0007243. doi: 10.1371/journal.pone.0007243
[48]  George EM, Izard T, Anderson SD, Brown DT (2010) Nucleosome interaction surface of linker histone H1c is distinct from that of H1(0). J Biol Chem 285: 20891–20896. doi: 10.1074/jbc.m110.108639
[49]  Kalashnikova AA, Winkler DD, McBryant SJ, Henderson RK, Herman JA, et al. (2013) Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus. Nucleic Acids Res 41: 4026–4035. doi: 10.1093/nar/gkt104
[50]  Li JY, Patterson M, Mikkola HK, Lowry WE, Kurdistani SK (2012) Dynamic distribution of linker histone H1.5 in cellular differentiation. PLoS Genet 8: e1002879. doi: 10.1371/journal.pgen.1002879
[51]  Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103: 389–398. doi: 10.1263/jbb.103.389
[52]  Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A, et al. (2009) Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation. PLoS One 4: e7665. doi: 10.1371/journal.pone.0007665
[53]  Yung SY, Gokhan S, Jurcsak J, Molero AE, Abrajano JJ, et al. (2002) Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc Natl Acad Sci U S A 99: 16273–16278. doi: 10.1073/pnas.232586699
[54]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[55]  Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36. doi: 10.1093/nar/30.9.e36


comments powered by Disqus