全部 标题 作者
关键词 摘要

PLOS ONE  2014 

Patterns of Nucleotide Diversity at Photoperiod Related Genes in Norway Spruce [Picea abies (L.) Karst.]

DOI: 10.1371/journal.pone.0095306

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima's D and Fay and Wu's H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima's D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce.

References

[1]  Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, et al. (2011) A map of local adaptation in Arabidopsis thaliana. Science 334: 86–9. doi: 10.1126/science.1209271
[2]  ?gren J, Schemske DW (2012) Reciprocal transplants demonstrate strong adaptive di_erentiation of the model organism Arabidopsis thaliana in its native range. The New phytologist 194: 1112–22. doi: 10.1111/j.1469-8137.2012.04112.x
[3]  Clack T, Mathews S, Sharrock RA (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant molecular biology 25: 413–27. doi: 10.1007/bf00043870
[4]  Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319–29. doi: 10.1016/s0092-8674(00)80841-7
[5]  Locke JCW, Kozma-Bognár L, Gould PD, Fehér B, Kevei E, et al. (2006) Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Molecular systems biology 2: 59. doi: 10.1038/msb4100102
[6]  Fowler S, Lee K, Onouchi H, Samach A, Richardson K, et al. (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO journal 18: 4679–88. doi: 10.1093/emboj/18.17.4679
[7]  Hicks KA, Albertson TM, Wagner DR (2001) EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. The Plant cell 13: 1281–92. doi: 10.2307/3871295
[8]  Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, et al. (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475: 398–402. doi: 10.1038/nature10182
[9]  Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nature reviews Genetics 13: 627–39. doi: 10.1038/nrg3291
[10]  Holm K, K?llman T, Gyllenstrand N, Hedman H, Lagercrantz U (2010) Does the core circadian clock in the moss physcomitrella patens compromise a single loop? BMC Plant Biology 10: 109. doi: 10.1186/1471-2229-10-109
[11]  Karlgren A, Gyllenstrand N, K?llman T, Lagercrantz U (2013) Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst). PLOS ONE 8: e60110. doi: 10.1371/journal.pone.0060110
[12]  Lagercrantz U (2009) At the end of the day: a common molecular mechanism for photoperiod responses in plants? Journal of experimental botany 60: 2501–15. doi: 10.1093/jxb/erp139
[13]  Karlgren A, Gyllenstrand N, Clapham D, Lagercrantz U (2013) FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce. Plant physiology 163: 792–803. doi: 10.1104/pp.113.224139
[14]  Heuertz M, De Paoli E, K?llman T, Larsson H, Jurman I, et al. (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174: 2095–2105. doi: 10.1534/genetics.106.065102
[15]  Pyh?j?rvi T, García-Gil MR, Knürr T, Mikkonen M, Wachowiak W, et al. (2007) Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics 177: 1713–24. doi: 10.1534/genetics.107.077099
[16]  Ingvarsson PK (2008) Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics 180: 329–40. doi: 10.1534/genetics.108.090431
[17]  Lagercrantz U, Ryman N (1990) Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44: 38–53. doi: 10.2307/2409523
[18]  Vendramin GG, Anzidei M, Madaghiele A, Sperisen C, Bucci G (2000) Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.). Genome 43: 68–78. doi: 10.1139/gen-43-1-68
[19]  Sperisen C, Büchler U, Gugerli F, Mátyás G, Geburek T, et al. (2001) Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Molecular Ecology 10: 257–63. doi: 10.1046/j.1365-294x.2001.01180.x
[20]  Tollefsrud MM, Kissling R, Gugerli F, Johnsen ?, Skr?ppa T, et al. (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Molecular Ecology 17: 4134–4150. doi: 10.1111/j.1365-294x.2008.03893.x
[21]  Parducci L, J?rgensen T, Tollefsrud MM, Elverland E, Alm T, et al. (2012) Glacial survival of boreal trees in northern Scandinavia. Science 335: 1083–6. doi: 10.1126/science.1216043
[22]  Giesecke T, Bennett KD (2004) The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. Journal of Biogeography 31: 1523–1548. doi: 10.1111/j.1365-2699.2004.01095.x
[23]  Eriksson G, Ekberg I, Dormling I, Mat B (1978) Inheritance of Bud-Set and Bud-Flushing in Picea Abies (L.) Karst *. Theoretical Applied Genetics 19: 3–19. doi: 10.1007/bf00273761
[24]  Liesch R (2005) Statistical Genetics for the Budset in Norway Spruce. Technical report, Uppsala, Sweden, Department of Mathematics Uppsala University.
[25]  Ekberg I, Eriksson G, Dormling I (1979) Photoperiodic reactions in conifer species. Holarctic Ecology 2: 255–263. doi: 10.1111/j.1600-0587.1979.tb01297.x
[26]  Gyllenstrand N, Clapham D, K?llman T, Lagercrantz U (2007) A Norway Spruce FLOWERING LOCUS T Homolog Is Implicated in Control of Growth Rhythm in Conifers. Plant Physiology 144: 248–257. doi: 10.1104/pp.107.095802
[27]  Chen J, K?llman T, Ma X, Gyllenstrand N, Zaina G, et al. (2012) Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics 191: 865–81. doi: 10.1534/genetics.112.140749
[28]  Holliday JA, Ralph SG, White R, Bohlmann J, Aitken SN (2008) Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytologist 178: 103–122. doi: 10.1111/j.1469-8137.2007.02346.x
[29]  Holefors A, Opseth L, Ree Rosnes AK, Ripel L, Snipen L, et al. (2009) Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant physiology and biochemistry 47: 105–15. doi: 10.1016/j.plaphy.2008.11.003
[30]  K?llman T (2009) Adaptive Evolution and Demographic History of Norway spruce (Picea abies). Ph.D. thesis, Sweden, Uppsala University.
[31]  Karlgren A, Gyllenstrand N, K?llman T, Sundstr?m JF, Moore D, et al. (2011) Evolution of the PEBP Gene Family in Plants: Functional Diversification in Seed Plant Evolution. Plant physiology 156: 1967–77. doi: 10.1104/pp.111.176206
[32]  Hudson R, Kreitman M, Aguadé M (1987) A Test of Neutral Molecular Evolution Based on Nucleotide Data. Genetics 116: 153–159.
[33]  Wright SI, Charlesworth B (2004) The HKA test revisited: a maximum-likelihood-ratio test of the standard neutral model. Genetics 168: 1071–6. doi: 10.1534/genetics.104.026500
[34]  Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, et al. (2004) Population history and natural selection shape patterns of genetic variation in 132 genes. PLOS biology 2: e286. doi: 10.1371/journal.pbio.0020286
[35]  Gyllenstrand N, Karlgren A, Clapham D, Holm K, Hall A, et al. (2013) No time for spruce: rapid dampening of circadian rhythms in picea abies (l. karst). Plant and Cell Physiology doi: 10.1093/pcp/pct199.
[36]  Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, et al. (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302: 1049–53. doi: 10.1126/science.1082971
[37]  Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). TAG Theoretical and applied genetics 115: 721–33. doi: 10.1007/s00122-007-0603-4
[38]  Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310: 1031–4. doi: 10.1126/science.1117619
[39]  Pin Pa, Zhang W, Vogt SH, Dally N, Büttner B, et al. (2012) The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Current biology: CB 22: 1095–101. doi: 10.1016/j.cub.2012.04.007
[40]  Ma XF, Hall D, Onge KRS, Jansson S, Ingvarsson PK (2010) Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway. Genetics 186: 1033–44. doi: 10.1534/genetics.110.120873
[41]  Keller SR, Levsen N, Olson MS, Tiffin P (2012) Local Adaptation in the Flowering-Time Gene Network of Balsam Poplar, Populus balsamifera L. Molecular Biology and Evolution 29: 3143–52. doi: 10.1093/molbev/mss121
[42]  Kujala ST, Savolainen O (2012) Sequence variation patterns along a latitudinal cline in Scots pine (Pinus sylvestris): signs of clinal adaptation? Tree Genetics & Genomes doi: 10.1007/s11295-012-0532-5
[43]  Hall D, Ma XF, Ingvarsson PK (2011) Adaptive evolution of the Populus tremula photoperiod pathway. Molecular Ecology 20: 1463–74. doi: 10.1111/j.1365-294x.2011.05014.x
[44]  Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169: 945–953. doi: 10.1534/genetics.104.034959
[45]  Olsen KM, Womack A, Garrett AR, Suddith JI, Purugganan MD (2002) Contrasting evolutionary forces in the Arabidopsis thaliana oral developmental pathway. Genetics 160: 1641–50.
[46]  Deng W, Ying H, Helliwell CA, Taylor JM, Peacock WJ, et al. (2011) FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108: 6680–5. doi: 10.1073/pnas.1103175108
[47]  St?dler T, Haubold B, Merino C, Stephan W, Pfaffelhuber P (2009) The impact of sampling schemes on the site frequency spectrum in nonequilibrium subdivided populations. Genetics 182: 205–16. doi: 10.1534/genetics.108.094904
[48]  St Onge KR, K?llman T, Slotte T, Lascoux M, Palmé AE (2011) Contrasting demographic history and population structure in Capsella rubella and Capsella grandiora, two closely related species with different mating systems. Molecular Ecology 20: 3306–3320. doi: 10.1111/j.1365-294x.2011.05189.x
[49]  Chen J, K?llman T, Gyllenstrand N, Lascoux M (2010) New insights on the speciation history and nucleotide diversity of three boreal spruce species and a Tertiary relict. Heredity 104: 3–14. doi: 10.1038/hdy.2009.88
[50]  Namroud MC, Guillet-Claude C, Mackay J, Isabel N, Bousquet J (2010) Molecular evolution of regulatory genes in spruces from different species and continents: heterogeneous patterns of linkage disequilibrium and selection but correlated recent demographic changes. Journal of molecular evolution 70: 371–86. doi: 10.1007/s00239-010-9335-1
[51]  Larsson H, K?llman T, Gyllenstrand N, Lascoux M (2013) Distribution of Long-Range Linkage Disequilibrium and Tajima's D Values in Scandinavian Populations of Norway Spruce (Picea abies). G3 (Bethesda, Md) 3: 795–806. doi: 10.1534/g3.112.005462
[52]  Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome research 8: 186–94. doi: 10.1101/gr.8.3.175
[53]  Ewing B, Hillier L, Wendl MC, Green P (1998) Base-Calling of Automated Sequencer Traces Using Phred. I. Accuracy Assessment. Genome Research 8: 175–185. doi: 10.1101/gr.8.3.175
[54]  Gordon D, Abajian C, Green P (1998) Consed: A Graphical Tool for Sequence Finishing. Genome Research 8: 195–202. doi: 10.1101/gr.8.3.195
[55]  Li Y, Stocks M, Hemmil? S, K?llman T, Zhu H, et al. (2010) Demographic histories of four spruce (Picea) species of the Qinghai-Tibetan Plateau and neighboring areas inferred from multiple nuclear loci. Molecular Biology and Evolution 27: 1001–14. doi: 10.1093/molbev/msp301
[56]  Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–2. doi: 10.1093/bioinformatics/btp187
[57]  De Mita S, Siol M (2012) EggLib: processing, analysis and simulation tools for population genetics and genomics. BMC genetics 13: 27. doi: 10.1186/1471-2156-13-27
[58]  Tajima F (1989) Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 123: 585–595.
[59]  Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155: 1405–1413.
[60]  Wright S (1951) The genetical structure of populations. Annals of Eugenics 15: 323–354. doi: 10.1111/j.1469-1809.1949.tb02451.x
[61]  Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70: 3321–3. doi: 10.1073/pnas.70.12.3321
[62]  Hudson RR (2000) A new statistic for detecting genetic differentiation. Genetics 155: 2011–4.
[63]  Smith BJ (2007) boa: An R Package for MCMC Output Convergence. Journal of Statistical Software 21.

Full-Text

comments powered by Disqus