All Title Author
Keywords Abstract

PLOS ONE  2014 

MicroRNA-21 Regulates hTERT via PTEN in Hypertrophic Scar Fibroblasts

DOI: 10.1371/journal.pone.0097114

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background As an important oncogenic miRNA, microRNA-21 (miR-21) is associated with various malignant diseases. However, the precise biological function of miR-21 and its molecular mechanism in hypertrophic scar fibroblast cells has not been fully elucidated. Methodology/Principal Findings Quantitative Real-Time PCR (qRT-PCR) analysis revealed significant upregulation of miR-21 in hypertrophic scar fibroblast cells compared with that in normal skin fibroblast cells. The effects of miR-21 were then assessed in MTT and apoptosis assays through in vitro transfection with a miR-21 mimic or inhibitor. Next, PTEN (phosphatase and tensin homologue deleted on chromosome ten) was identified as a target gene of miR-21 in hypertrophic scar fibroblast cells. Furthermore, Western-blot and qRT-PCR analyses revealed that miR-21 increased the expression of human telomerase reverse transcriptase (hTERT) via the PTEN/PI3K/AKT pathway. Introduction of PTEN cDNA led to a remarkable depletion of hTERT and PI3K/AKT at the protein level as well as inhibition of miR-21-induced proliferation. In addition, Western-blot and qRT-PCR analyses confirmed that hTERT was the downstream target of PTEN. Finally, miR-21 and PTEN RNA expression levels in hypertrophic scar tissue samples were examined. Immunohistochemistry assays revealed an inverse correlation between PTEN and hTERT levels in high miR-21 RNA expressing-hypertrophic scar tissues. Conclusions/Significance These data indicate that miR-21 regulates hTERT expression via the PTEN/PI3K/AKT signaling pathway by directly targeting PTEN, therefore controlling hypertrophic scar fibroblast cell growth. MiR-21 may be a potential novel molecular target for the treatment of hypertrophic scarring.

References

[1]  Aarabi S, Longaker MT, Gurtner GC (2007) Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med 4: e234. doi: 10.1371/journal.pmed.0040234
[2]  Zhu Z, Ding J, Shankowsky HA, Tredget EE (2013) The molecular mechanism of hypertrophic scar. J Cell Commun Signal 7: 239–252. doi: 10.1007/s12079-013-0195-5
[3]  Seton-Rogers S (2013) Tumour suppressors: Nuclear PTEN. Nat Rev Cancer 13: 606. doi: 10.1038/nrc3591
[4]  Paul P, Qiao J, Kim KW, Romain C, Lee S, et al. (2013) Correa H, Chung DH. Targeting Gastrin-Releasing Peptide Suppresses Neuroblastoma Progression via Upregulation of PTEN Signaling. PLoS One 8: e72570. doi: 10.1371/journal.pone.0072570
[5]  Tesio M, Oser GM, Baccelli I, Blanco-Bose W, Wu H, et al. (2013) PTEN loss in the bone marrow leads to G-CSF-mediated HSC mobilization. J Exp Med 210: 2337–2349. doi: 10.1084/jem.20122768
[6]  Kwak MK, Johnson DT, Zhu C, Lee SH, Ye DW, et al. (2013) Conditional deletion of the PTEN gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors. PLoS One 8: e53476. doi: 10.1371/journal.pone.0053476
[7]  Cordes I, Kluth M, Zygis D, Rink M, Chun F, et al. (2013) PTEN deletions are related to disease progression and unfavourable prognosis in early bladder cancer. Histopathology 63: 670–677. doi: 10.1111/his.12209
[8]  Gont A, Hanson JE, Lavictoire SJ, Parolin DA, Daneshmand M, et al. (2013) PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1. Oncotarget 4: 1266–1279.
[9]  Parapuram SK, Shi-wen X, Elliott C, Welch ID, Jones H, et al. (2011) Loss of PTEN expression by dermal fibroblasts causes skin fibrosis. J Invest Dermatol 131: 1996–2003. doi: 10.1038/jid.2011.156
[10]  Miyoshi K, Yanagi S, Kawahara K, Nishio M, Tsubouchi H, et al. (2013) Epithelial PTEN controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am J Respir Crit Care Med 187: 262–275. doi: 10.1164/rccm.201205-0851oc
[11]  Zhang Y, Yao X, Jiang C, Yue J, Guan J, et al. (2013) Expression of PI3K, PTEN and Akt in small intestinal adenocarcinoma detected by quantum dots-based immunofluorescence technology. Cancer Biomark 13: 299–305.
[12]  Pericacho M, Velasco S, Prieto M, Llano E, López-Novoa JM, et al. (2013) Endoglin haploinsufficiency promotes fibroblast accumulation during wound healing through Akt activation. PLoS One 8: e54687. doi: 10.1371/journal.pone.0054687
[13]  Waite KA, Eng C (2002) Protean PTEN: form and function. Am J Hum Genet 70: 829–844. doi: 10.1086/340026
[14]  Zhu G, Chai J, Ma L, Duan H, Zhang H (2013) Downregulated microRNA-32 expression induced by high glucose inhibits cell cycle progression via PTEN upregulation and Akt inactivation in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 433: 526–531. doi: 10.1016/j.bbrc.2013.03.018
[15]  Seront E, Pinto A, Bouzin C, Bertrand L, Machiels JP, et al. (2013) PTEN deficiency is associated with reduced sensitivity to mTOR inhibitor in human bladder cancer through the unhampered feedback loop driving PI3K/Akt activation. Br J Cancer 109: 1586–1592.
[16]  Pi WF, Guo XJ, Su LP, Xu WG (2013) Troglitazone upregulates PTEN expression and induces the apoptosis of pulmonary artery smooth muscle cells under hypoxic conditions. Int J Mol Med 32: 1101–1109. doi: 10.3892/ijmm.2013.1487
[17]  Chen L, Li Y, Fu Y, Peng J, Mo MH, et al. (2013) Role of deregulated microRNAs in breast cancer progression using FFPE tissue. PLoS One 8: e54213. doi: 10.1371/journal.pone.0054213
[18]  Chen YJ, Thang MW, Chan YT, Huang YF, Ma N, et al. (2013) Global assessment of Antrodia cinnamomea-induced microRNA alterations in hepatocarcinoma cells. PLoS One 8: e82751. doi: 10.1371/journal.pone.0082751
[19]  Bovell LC, Shanmugam C, Putcha BD, Katkoori VR, Zhang B, et al. (2013) The prognostic value of microRNAs varies with patient race/ethnicity and stage of colorectal cancer. Clin Cancer Res 19: 3955–3965. doi: 10.1158/1078-0432.ccr-12-3302
[20]  Yang GD, Huang TJ, Peng LX, Yang CF, Liu RY, et al. (2013) Epstein-Barr Virus_Encoded LMP1 upregulates microRNA-21 to promote the resistance of nasopharyngeal carcinoma cells to cisplatin-induced Apoptosis by suppressing PDCD4 and Fas-L. PLoS One 8: e78355. doi: 10.1371/journal.pone.0078355
[21]  Aldaz B, Sagardoy A, Nogueira L, Guruceaga E, Grande L, et al. (2013) Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells. PLoS One 8: e77098. doi: 10.1371/journal.pone.0077098
[22]  Wang JL, Hu Y, Kong X, Wang ZH, Chen HY, et al. (2013) Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PLoS One 8: e73683. doi: 10.1371/journal.pone.0073683
[23]  Nouraee N, Van Roosbroeck K, Vasei M, Semnani S, Samaei NM, et al. (2013) Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma. PLoS One 8: e73009. doi: 10.1371/journal.pone.0073009
[24]  Saad R, Chen Z, Zhu S, Jia P, Zhao Z, et al. (2013) Deciphering the unique microRNA signature in human esophageal adenocarcinoma. PLoS One 8: e64463. doi: 10.1371/journal.pone.0064463
[25]  Moreira FC, Assump??o M, Hamoy IG, Darnet S, Burbano R, et al. (2014) MiRNA Expression Profile for the Human Gastric Antrum Region Using Ultra-Deep Sequencing. PLoS One 9: e92300. doi: 10.1371/journal.pone.0092300
[26]  Sanchez-Diaz PC, Hsiao TH, Chang JC, Yue D, Tan MC, et al. (2013) De-regulated microRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development. PLoS One 8: e61622. doi: 10.1371/journal.pone.0061622
[27]  Kadera BE, Li L, Toste PA, Wu N, Adams C, et al. (2013) MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One 8: e71978. doi: 10.1371/journal.pone.0071978
[28]  Vang S, Wu HT, Fischer A, Miller DH, MacLaughlan S, et al. (2013) Identification of ovarian cancer metastatic miRNAs. PLoS One 8: e58226. doi: 10.1371/journal.pone.0058226
[29]  Song Jt, Hu B, Qu Hy, Bi Cl, Huang Xz, et al. (2012) Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells. PLoS One 7: e47657. doi: 10.1371/journal.pone.0047657
[30]  Zhi F, Dong H, Jia X, Guo W, Lu H, et al. (2013) Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. PLoS One 8: e60034. doi: 10.1371/journal.pone.0060034
[31]  Shen L, Ling M, Li Y, Xu Y, Zhou Y, et al. (2013) Feedback regulations of miR-21 and MAPKs via Pdcd4 and Spry1 are involved in arsenite-induced cell malignanttransformation. PLoS One 8: e57652. doi: 10.1371/journal.pone.0057652
[32]  Schee K, Lorenz S, Worren MM, Günther CC, Holden M, et al. (2013) Deep Sequencing the MicroRNA Transcriptome in Colorectal Cancer. PLoS One 8: e66165. doi: 10.1371/journal.pone.0066165
[33]  Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, et al. (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133: 647–58. doi: 10.1053/j.gastro.2007.05.022
[34]  Kashiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, et al. (2012) miR-196a Downregulation Increases the Expression of Type I and III Collagens in Keloid Fibroblasts. J Invest Dermatol 132: 1597–1604. doi: 10.1038/jid.2012.22
[35]  Zhao G, Cai C, Yang T, Qiu X, Liao B, et al. (2013) MicroRNA-221 Induces Cell Survival and Cisplatin Resistance through PI3K/Akt Pathway in Human Osteosarcoma. PLoS One 8: e53906. doi: 10.1371/journal.pone.0053906
[36]  Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, et al. (2010) MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 411: 846–852. doi: 10.1016/j.cca.2010.02.074
[37]  Pan J, Wang T, Wang L, Chen W, Song M (2014) Cyclic strain-induced cytoskeletal rearrangement of human periodontal ligament cells via the rho signaling pathway. PLoS One 9: e91580.
[38]  Xia X, Yang B, Zhai X, Liu X, Shen K, et al. (2013) Prognostic Role of microRNA-21 in Colorectal Cancer: a Meta-Analysis. PLoS One 8: e80426. doi: 10.1371/journal.pone.0080426
[39]  Dey N, Das F, Ghosh-Choudhury N, Mandal CC, Parekh DJ, et al. (2012) MicroRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One 7: e37366. doi: 10.1371/journal.pone.0037366
[40]  Giunco S, Dolcetti R, Keppel S, Celeghin A, Indraccolo S, et al. (2013) hTERT inhibition triggers Epstein-Barr virus lytic cycle and apoptosis in immortalized and transformed B cells: a basis for new therapies. Clin Cancer Res 19: 2036–2047. doi: 10.1158/1078-0432.ccr-12-2537
[41]  Satzger I, Mattern A, Kuettler U, Weinspach D, Niebuhr M, et al. (2012) microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol 21: 509–514. doi: 10.1111/j.1600-0625.2012.01510.x
[42]  Tyack Z, Simons M, Spinks A, Wasiak J (2012) A systematic review of the quality of burn scar rating scales for clinical and research use. Burns 38: 6–18. doi: 10.1016/j.burns.2011.09.021
[43]  Lo TF, Tsai WC, Chen ST (2013) MicroRNA-21-3p, a berberine-induced miRNA, directly downregulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS One 8: e75628. doi: 10.1371/journal.pone.0075628
[44]  Wang JL, Hu Y, Kong X, Wang ZH, Chen HY, et al. (2013) Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PLoS One 8: e73683. doi: 10.1371/journal.pone.0073683
[45]  Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L, Schreiner C, Fortschegger K, et al. (2013) High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell 12: 446–458. doi: 10.1111/acel.12069
[46]  Zhang J, Liu Z, Cao W, Chen L, Xiong X, et al.. (2013) Amentoflavone inhibits angiogenesis of endothelial cells and stimulates apoptosis in hypertrophic scarfibroblasts. Burns 4179 00341-0.
[47]  Kitagishi Y, Matsuda S (2013) Diets involved in PPAR and PI3K/AKT/PTEN pathway may contribute to neuroprotection in a traumatic brain injury. Alzheimers Res Ther 5: 42. doi: 10.1186/alzrt208
[48]  Guo L, Chen L, Bi S, Chai L, Wang Z, et al. (2012) PTEN inhibits proliferationand functions of hypertrophic scar fibroblasts. Mol Cell Biochem 361: 161–168. doi: 10.1007/s11010-011-1100-2
[49]  Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, et al. (2012) microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 32: 17935–17947. doi: 10.1523/jneurosci.3860-12.2012
[50]  Chen H, Li Y, Tollefsbo l TO (2009) Strategies targeting telomerase inhibit ion. Mol Biotechnol 41: 194–199. doi: 10.1007/s12033-008-9117-9
[51]  Antoniou KM, Samara KD, Lasithiotaki I, Margaritopoulos GA, Soufla G, et al. (2013) Differential telomerase expression in idiopathic pulmonary fibrosis and non-small cell lung cancer. Oncol Rep 30: 2617–2624. doi: 10.3892/or.2013.2753
[52]  Chakrabarti M, Banik NL, Ray SK (2013) miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res 319: 1575–1585. doi: 10.1016/j.yexcr.2013.02.025
[53]  Zhou C, Bae-Jump VL, Whang YE, Gehrig PA, Boggess JF (2006) The PTEN tumor suppressor inhibits telomerase activity in endometrial cancer cells by decreasing hTERT mRNA levels. Gynecol Oncol 101: 305–310. doi: 10.1016/j.ygyno.2005.10.038

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal