All Title Author
Keywords Abstract


Estimating the Fitness Advantage Conferred by Permissive Neuraminidase Mutations in Recent Oseltamivir-Resistant A(H1N1)pdm09 Influenza Viruses

DOI: doi/10.1371/journal.ppat.1004065

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide.

References

[1]  Hahne S, Donker T, Meijer A, Timen A, van Steenbergen J, et al.. (2009) Epidemiology and control of influenza A(H1N1)v in the Netherlands: the first 115 cases. Euro Surveill 14: : pii = 19267.
[2]  Cao B, Li XW, Mao Y, Wang J, Lu HZ, et al. (2009) Clinical features of the initial cases of 2009 pandemic influenza A (H1N1) virus infection in China. N Engl J Med 361: 2507–2517. doi: 10.1056/nejmoa0906612
[3]  Monto AS, McKimm-Breschkin JL, Macken C, Hampson AW, Hay A, et al. (2006) Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use. Antimicrob Agents Chemother 50: 2395–2402. doi: 10.1128/aac.01339-05
[4]  Escuret V, Frobert E, Bouscambert-Duchamp M, Sabatier M, Grog I, et al. (2008) Detection of human influenza A (H1N1) and B strains with reduced sensitivity to neuraminidase inhibitors. J Clin Virol 41: 25–28. doi: 10.1016/j.jcv.2007.10.019
[5]  NISN (2005) Use of influenza antivirals during 2003-2004 and monitoring of neuraminidase inhibitor resistance. Wkly Epidemiol Rec 80: 156.
[6]  Hurt AC, Barr IG (2008) Influenza viruses with reduced sensitivity to the neuraminidase inhibitor drugs in untreated young children. Commun Dis Intell Q Rep 32: 57–62.
[7]  Sheu TG, Deyde VM, Okomo-Adhiambo M, Garten RJ, Xu X, et al. (2008) Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 52: 3284–3292. doi: 10.1128/aac.00555-08
[8]  Ives JA, Carr JA, Mendel DB, Tai CY, Lambkin R, et al. (2002) The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both in vitro and in vivo. Antiviral Res 55: 307–317. doi: 10.1016/s0166-3542(02)00053-0
[9]  Abed Y, Goyette N, Boivin G (2004) A reverse genetics study of resistance to neuraminidase inhibitors in an influenza A/H1N1 virus. Antivir Ther 9: 577–581.
[10]  Herlocher ML, Truscon R, Elias S, Yen HL, Roberts NA, et al. (2004) Influenza viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets. J Infect Dis 190: 1627–1630. doi: 10.1086/424572
[11]  Hauge SH, Dudman S, Borgen K, Lackenby A, Hungnes O (2009) Oseltamivir-resistant influenza viruses A (H1N1), Norway, 2007-08. Emerg Infect Dis 15: 155–162. doi: 10.3201/eid1502.081031
[12]  Moscona A (2009) Global transmission of oseltamivir-resistant influenza. N Engl J Med 360: 953–956. doi: 10.1056/nejmp0900648
[13]  Meijer A, Lackenby A, Hungnes O, Lina B, van-der-Werf S, et al. (2009) Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007-08 season. Emerg Infect Dis 15: 552–560. doi: 10.3201/eid1504.181280
[14]  Hurt AC, Ernest J, Deng YM, Iannello P, Besselaar TG, et al. (2009) Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res 83: 90–93. doi: 10.1016/j.antiviral.2009.03.003
[15]  Bloom JD, Gong LI, Baltimore D (2010) Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328: 1272–1275. doi: 10.1126/science.1187816
[16]  Bouvier NM, Rahmat S, Pica N (2012) Enhanced mammalian transmissibility of seasonal influenza A/H1N1 viruses encoding an oseltamivir-resistant neuraminidase. J Virol 86: 7268–7279. doi: 10.1128/jvi.07242-12
[17]  Abed Y, Pizzorno A, Bouhy X, Boivin G (2011) Role of permissive neuraminidase mutations in influenza A/Brisbane/59/2007-like (H1N1) viruses. PLoS Pathog 7: e1002431. doi: 10.1371/journal.ppat.1002431
[18]  Wolfe C, Greenwald I, Chen L (2010) Pandemic (H1N1) 2009 and oseltamivir resistance in hematology/oncology patients. Emerg Infect Dis 16: 1809–1811. doi: 10.3201/eid1611.101053
[19]  Moore C, Galiano M, Lackenby A, Abdelrahman T, Barnes R, et al. (2011) Evidence of person-to-person transmission of oseltamivir-resistant pandemic influenza A(H1N1) 2009 virus in a hematology unit. J Infect Dis 203: 18–24. doi: 10.1093/infdis/jiq007
[20]  Chen LF, Dailey NJ, Rao AK, Fleischauer AT, Greenwald I, et al. (2011) Cluster of oseltamivir-resistant 2009 pandemic influenza A (H1N1) virus infections on a hospital ward among immunocompromised patients—North Carolina, 2009. J Infect Dis 203: 838–846. doi: 10.1093/infdis/jiq124
[21]  CDC (2009) Oseltamivir-resistant 2009 pandemic influenza A (H1N1) virus infection. Morb Mortal Wkly Rep 58: 969–972.
[22]  Le QM, Wertheim HF, Tran ND, van Doorn HR, Nguyen TH, et al. (2010) A community cluster of oseltamivir-resistant cases of 2009 H1N1 influenza. N Engl J Med 362: 86–87. doi: 10.1056/nejmc0910448
[23]  Storms AD, Gubareva LV, Su S, Wheeling JT, Okomo-Adhiambo M, et al. (2012) Oseltamivir-resistant pandemic (H1N1) 2009 virus infections, United States, 2010-11. Emerg Infect Dis 18: 308–311. doi: 10.3201/eid1802.111466
[24]  Lackenby A, Moran Gilad J, Pebody R, Miah S, Calatayud L, et al.. (2011) Continued emergence and changing epidemiology of oseltamivir-resistant influenza A(H1N1)2009 virus, United Kingdom, winter 2010/11. Euro Surveill 16: : pii = 19784.
[25]  Hurt AC, Hardie K, Wilson NJ, Deng YM, Osbourn M, et al. (2011) Community transmission of oseltamivir-resistant A(H1N1)pdm09 influenza. N Engl J Med 365: 2541–2542. doi: 10.1056/nejmc1111078
[26]  Hurt AC, Hardie K, Wilson NJ, Deng YM, Osbourn M, et al. (2012) Characteristics of a widespread community cluster of H275Y oseltamivir-resistant A(H1N1)pdm09 influenza in Australia. J Infect Dis 206: 148–157. doi: 10.1093/infdis/jis337
[27]  Hurt AC, Nor'e SS, McCaw JM, Fryer HR, Mosse J, et al. (2010) Assessing the viral fitness of oseltamivir-resistant influenza viruses in ferrets, using a competitive-mixtures model. J Virol 84: 9427–9438. doi: 10.1128/jvi.00373-10
[28]  NHMRC (2004) Australian code of practice for the care and use of animals for scientific purposes. http://www.nhmrc.gov.au/_files_nhmrc/pub?lications/attachments/ea16.pdf.
[29]  Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. AM J Epidemiol 27: 493–497.
[30]  Barr IG, Komadina N, Hurt A, Shaw R, Durrant C, et al. (2003) Reassortants in recent human influenza A and B isolates from South East Asia and Oceania. Virus Res 98: 35–44. doi: 10.1016/j.virusres.2003.08.011
[31]  Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA 97: 6108–6113. doi: 10.1073/pnas.100133697
[32]  Bloom JD, Nayak JS, Baltimore D (2011) A computational-experimental approach identifies mutations that enhance surface expression of an oseltamivir-resistant influenza neuraminidase. PLoS One 6: e22201. doi: 10.1371/journal.pone.0022201
[33]  Yen HL, McKimm-Breschkin JL, Choy KT, Wong DD, Cheung PP, et al. (2013) Resistance to neuraminidase inhibitors conferred by an R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population. MBio 4: e00396–13. doi: 10.1128/mbio.00396-13
[34]  Yen HL, Herlocher LM, Hoffmann E, Matrosovich MN, Monto AS, et al. (2005) Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob Agents Chemother 49: 4075–4084. doi: 10.1128/aac.49.10.4075-4084.2005
[35]  Hurt AC, Barr IG, Komadina N, Hampson AW (2004) A novel means of identifying the neuraminidase type of currently circulating human A(H1) influenza viruses. Virus Res 103: 79–83. doi: 10.1016/j.virusres.2004.02.017
[36]  Deng YM, Caldwell N, Hurt A, Shaw T, Kelso A, et al. (2011) A comparison of pyrosequencing and neuraminidase inhibition assays for the detection of oseltamivir-resistant pandemic influenza A(H1N1) 2009 viruses. Antiviral Res 90: 87–91. doi: 10.1016/j.antiviral.2011.02.014
[37]  McCaw JM, Arinaminpathy N, Hurt AC, McVernon J, McLean AR (2011) A mathematical framework for estimating pathogen transmission fitness and inoculum size using data from a competitive mixtures animal model. PLoS Comput Biol 7: e1002026. doi: 10.1371/journal.pcbi.1002026
[38]  Perelson AS, Ribeiro RM (2013) Modeling the within-host dynamics of HIV infection. BMC Biol 11: 96. doi: 10.1186/1741-7007-11-96
[39]  Beauchemin CA, Handel A (2011) A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health 11 Suppl 1S7. doi: 10.1186/1471-2458-11-s1-s7
[40]  Smith AM, Perelson AS (2011) Influenza A virus infection kinetics: quantitative data and models. Wiley Interdiscip Rev Syst Biol Med 3: 429–445. doi: 10.1002/wsbm.129
[41]  Pinilla LT, Holder BP, Abed Y, Boivin G, Beauchemin CA (2012) The H275Y neuraminidase mutation of the pandemic A/H1N1 influenza virus lengthens the eclipse phase and reduces viral output of infected cells, potentially compromising fitness in ferrets. J Virol 86: 10651–10660. doi: 10.1128/jvi.07244-11
[42]  Petrie SM, Guarnaccia T, Laurie KL, Hurt AC, McVernon J, et al. (2013) Reducing uncertainty in within-host parameter estimates of influenza infection by measuring both infectious and total viral load. PLoS One 8: e64098. doi: 10.1371/journal.pone.0064098
[43]  Colman PM (1994) Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci 3: 1687–1696. doi: 10.1002/pro.5560031007
[44]  Nayak DP, Hui EK, Barman S (2004) Assembly and budding of influenza virus. Virus Res 106: 147–165. doi: 10.1016/j.virusres.2004.08.012
[45]  Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, et al. (2008) The influenza virus resource at the National Center for Biotechnology Information. J Virol 82: 596–601. doi: 10.1128/jvi.02005-07
[46]  Seibert CW, Kaminski M, Philipp J, Rubbenstroth D, Albrecht RA, et al. (2010) Oseltamivir-resistant variants of the 2009 pandemic H1N1 influenza A virus are not attenuated in the guinea pig and ferret transmission models. J Virol 84: 11219–11226. doi: 10.1128/jvi.01424-10
[47]  Memoli MJ, Davis AS, Proudfoot K, Chertow DS, Hrabal RJ, et al. (2011) Multidrug-resistant 2009 pandemic influenza A(H1N1) viruses maintain fitness and transmissibility in ferrets. J Infect Dis 203: 348–357. doi: 10.1093/infdis/jiq067
[48]  Kiso M, Shinya K, Shimojima M, Takano R, Takahashi K, et al. (2010) Characterization of oseltamivir-resistant 2009 H1N1 pandemic influenza A viruses. PLoS Pathog 6: e1001079. doi: 10.1371/journal.ppat.1001079
[49]  Hamelin ME, Baz M, Abed Y, Couture C, Joubert P, et al. (2010) Oseltamivir-resistant pandemic A/H1N1 virus is as virulent as its wild-type counterpart in mice and ferrets. PLoS Pathog 6: e1001015. doi: 10.1371/journal.ppat.1001015
[50]  Abed Y, Pizzorno A, Bouhy X, Rheaume C, Boivin G (2014) Impact of Potential Permissive Neuraminidase Mutations on Viral Fitness of the H275Y Oseltamivir-Resistant Influenza A(H1N1)pdm09 Virus In Vitro, in Mice and in Ferrets. J Virol 88: 1652–1658. doi: 10.1128/jvi.02681-13
[51]  Duan S, Boltz DA, Seiler P, Li J, Bragstad K, et al. (2010) Oseltamivir-resistant pandemic H1N1/2009 influenza virus possesses lower transmissibility and fitness in ferrets. PLoS Pathog 6: e1001022. doi: 10.1371/journal.ppat.1001022
[52]  WHO (2013) Influenza. http://www.who.int/influenza/gisrs_labor?atory/flunet/en/.
[53]  Takashita E, Ejima M, Itoh R, Miura M, Ohnishi A, et al.. (2014) A community cluster of influenza A(H1N1)pdm09 virus exhibiting cross-resistance to oseltamivir and peramivir in Japan, November to December 2013. Euro Surveill 19: : pii = 20666.
[54]  NIID (2014) Weekly reports of influenza virus isolation/detection, from week 18 of 2013 to week 6 of 2014, Japan. http://www.nih.go.jp/niid/images/iasr/ra?pid/inf/2014_6w/sinin1e_140206.gif.
[55]  NIID (2014) Detection of A(H1N1)pdm09 viruses with H275Y mutation in Japan. http://www.nih.go.jp/niid/images/flu/res?istance/20140203/dr13-14e20140203-2.gif.
[56]  CNIC (2014) Chinese Influenza Weekly Report, Week 04 2014. www.cnic.org.cn/eng/show.php?contentid=6?91.
[57]  Kelso A, Hurt AC (2012) The ongoing battle against influenza: Drug-resistant influenza viruses: why fitness matters. Nat Med 18: 1470–1471. doi: 10.1038/nm.2954
[58]  Hurt AC, Butler J, Kelso A, Barr IG (2012) Influenza antivirals and resistance: the next 10 years? Expert Rev Anti Infect Ther 10: 1221–1223. doi: 10.1586/eri.12.125
[59]  Thorlund K, Awad T, Boivin G, Thabane L (2011) Systematic review of influenza resistance to the neuraminidase inhibitors. BMC Infect Dis 11: 134. doi: 10.1186/1471-2334-11-134
[60]  Hayden FG (2013) Newer influenza antivirals, biotherapeutics and combinations. Influenza Other Respir Viruses 7 Suppl 163–75. doi: 10.1111/irv.12045

Full-Text

comments powered by Disqus