All Title Author
Keywords Abstract


An Insight into the Transcriptome of the Digestive Tract of the Bloodsucking Bug, Rhodnius prolixus

DOI: 10.1371/journal.pntd.0002594

Full-Text   Cite this paper   Add to My Lib

Abstract:

The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7–8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.

References

[1]  Grimaldi D, Engel M (2005) Evolution of the insects. New York: Cambridge University Press. 772 p.
[2]  Balczun C, Siemanowski J, Pausch JK, Helling S, Marcus K, et al. (2012) Intestinal aspartate proteases TiCatD and TiCatD2 of the haematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity. Insect Biochem Mol Biol 42: 240–250. doi: 10.1016/j.ibmb.2011.12.006
[3]  WHO (2013) Chagas disease (American trypanosomiasis) Fact sheet N°340.
[4]  Schofield CJ, Galvao C (2009) Classification, evolution, and species groups within the Triatominae. Acta Trop 110: 88–100. doi: 10.1016/j.actatropica.2009.01.010
[5]  Wigglesworth VB (1972) The principles of insect physiology. New York: Chapman and Hall. 827 p.
[6]  Te Brugge VA, Schooley DA, Orchard I (2002) The biological activity of diuretic factors in Rhodnius prolixus. Peptides 23: 671–681. doi: 10.1016/s0196-9781(01)00661-1
[7]  Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Biochem Biophys 47: 47–61. doi: 10.1002/arch.1036
[8]  Bolognesi R, Terra WR, Ferreira C (2008) Peritrophic membrane role in enhancing digestive efficiency. Theoretical and experimental models. J Insect Physiol 54: 1413–1422. doi: 10.1016/j.jinsphys.2008.08.002
[9]  Terra WR (1988) Physiology and biochemistry of insect digestion: an evolutionary perspective. Braz J Med Biol Res 21: 675–734.
[10]  Lane NJ, Harrison JB (1979) An unusual cell-surface modification - Double plasma-membrane. J Cell Sci 39: 355–372.
[11]  Gutierrez LS, Burgos MH (1986) The surface extracellular coat of the midgut in Triatoma infestans. I. Mechanism of development. J Ultrastruct Mol Struct Res 95: 75–83. doi: 10.1016/0889-1605(86)90031-5
[12]  Ferreira C, Ribeiro AF, Garcia ES, Terra WR (1988) Digestive enzymes trapped between and associated with the double plasma-membranes of Rhodnius prolixus posterior midgut cells. Insect Biochem 18: 521–530. doi: 10.1016/0020-1790(88)90003-0
[13]  Silva CP, Ribeiro AF, Terra WR (1996) Enzyme markers and isolation of the microvillar and perimicrovillar membranes of Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) midgut cells. Insect Biochem Mol Biol 26: 1011–1018. doi: 10.1016/s0965-1748(96)00010-0
[14]  Wigglesworth VB (1936) Symbiotic bacteria in a blood sucking insect, Rhodnius prolixus Stal. Parasitology 28: 284–289. doi: 10.1017/s0031182000022459
[15]  Lake P, Friend WG (1968) The use of artificial diets to determine some of the effects of Nocardia rhodnii on the development of Rhodnius prolixus. J Insect Physiol 14: 543–562. doi: 10.1016/0022-1910(68)90070-x
[16]  Hill P, Campbell JA, Petrie IA (1976) Rhodnius prolixus and its symbiotic actinomycete: a microbiological, physiological and behavioral study. Proc R Soc London B 194: 501–525. doi: 10.1098/rspb.1976.0091
[17]  Baines S (1956) The role of the symbiotic bacteria in the nutrition of Rhodnius prolixus. J Exp Biol 33: 533–541.
[18]  Eichler S, Schaub GA (2002) Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol 100: 17–27. doi: 10.1006/expr.2001.4653
[19]  Garcia ES, Genta FA, de Azambuja P, Schaub GA (2010) Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol 26: 499–505. doi: 10.1016/j.pt.2010.07.003
[20]  Ribeiro JMC, Pereira MEA (1984) Midgut glycosidases of Rhodnius prolixus. Insect Biochem 14: 103–108. doi: 10.1016/0020-1790(84)90089-1
[21]  Grillo LA, Majerowicz D, Gondim KC (2007) Lipid metabolism in Rhodnius prolixus (Hemiptera: Reduviidae): role of a midgut triacylglycerol-lipase. Insect Biochem Mol Biol 37: 579–588. doi: 10.1016/j.ibmb.2007.03.002
[22]  Garcia ED, Garcia ML (1977) Control of protease secretion in the intestine of fifth instar larvae of Rhodnius prolixus. J Insect Physiol 23: 247–251. doi: 10.1016/0022-1910(77)90038-5
[23]  Garcia ES, Guimaraes JA, Prado JL (1978) Purification and characterization of a sulfhydryl-dependent protease from Rhodnius prolixus midgut. Arch Biochem Biophys 188: 315–322. doi: 10.1016/s0003-9861(78)80015-0
[24]  Terra WR, Ferreira C, Garcia ES (1988) Origin, distribution, properties and functions of the major Rhodnius prolixus midgut hydrolases. Insect Biochemistry 18: 423–434. doi: 10.1016/0020-1790(88)90058-3
[25]  Kollien AH, Waniek PJ, Nisbet AJ, Billingsley PF, Schaub GA (2004) Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. Insect Mol Biol 13: 569–579. doi: 10.1111/j.0962-1075.2004.00504.x
[26]  Garcia ES, Guimaraes JA (1979) Proteolytic enzymes in the Rhodnius prolixus midgut. Experientia 35: 305–306. doi: 10.1007/bf01964315
[27]  Oliveira MF, Silva JR, Dansa-Petretski M, de Souza W, Lins U, et al. (1999) Haem detoxification by an insect. Nature 400: 517–518. doi: 10.1038/22910
[28]  Oliveira MF, Timm BL, Machado EA, Miranda K, Attias M, et al. (2002) On the pro-oxidant effects of haemozoin. FEBS Lett 512: 139–144. doi: 10.1016/s0014-5793(02)02243-3
[29]  B?ker CA, Schaub GA (1984) Scanning electron microscopic studies of Trypanosoma cruzi in the rectum of its vector Triatoma infestans. Z Parasitenkd 70: 459–469. doi: 10.1007/bf00926686
[30]  Karim S, Singh P, Ribeiro JM (2011) A deep insight into the sialotranscriptome of the Gulf Coast tick, Amblyomma maculatum. PLoS ONE 6: e28525. doi: 10.1371/journal.pone.0028525
[31]  Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23: 403–405. doi: 10.1016/s0968-0004(98)01285-7
[32]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[33]  Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–858. doi: 10.1021/ac950914h
[34]  Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, et al. (2006) The PROSITE database. Nucleic Acids Res 34: D227–230. doi: 10.1093/nar/gkp885
[35]  Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402. doi: 10.1093/nar/25.17.3389
[36]  Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29: 87–101. doi: 10.1016/s0965-1748(98)00123-4
[37]  Barry MK, Triplett AA, Christensen AC (1999) A peritrophin-like protein expressed in the embryonic tracheae of Drosophila melanogaster. Insect Biochem Mol Biol 29: 319–327. doi: 10.1016/s0965-1748(99)00004-1
[38]  Gaines PJ, Walmsley SJ, Wisnewski N (2003) Cloning and characterization of five cDNAs encoding peritrophin-A domains from the cat flea, Ctenocephalides felis. Insect Biochem Mol Biol 33: 1061–1073. doi: 10.1016/s0965-1748(03)00096-1
[39]  Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, et al. (2010) Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol 40: 214–227. doi: 10.1016/j.ibmb.2010.01.011
[40]  Venancio TM, Cristofoletti PT, Ferreira C, Verjovski-Almeida S, Terra WR (2009) The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol Biol 18: 33–44. doi: 10.1111/j.1365-2583.2008.00845.x
[41]  Devenport M, Alvarenga PH, Shao L, Fujioka H, Bianconi ML, et al. (2006) Identification of the Aedes aegypti peritrophic matrix protein AeIMUCI as a heme-binding protein. Biochemistry 45: 9540–9549. doi: 10.1021/bi0605991
[42]  Lang T, Hansson GC, Samuelsson T (2007) Gel-forming mucins appeared early in metazoan evolution. Proc Natl Acad Sci U S A 104: 16209–16214. doi: 10.1073/pnas.0705984104
[43]  Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54: 285–302. doi: 10.1146/annurev.ento.54.110807.090559
[44]  Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, et al. (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37: D233–238. doi: 10.1093/nar/gkn663
[45]  Tomiya N, Narang S, Park J, Abdul-Rahman B, Choi O, et al. (2006) Purification, characterization, and cloning of a Spodoptera frugiperda Sf9 beta-N-acetylhexosaminidase that hydrolyzes terminal N-acetylglucosamine on the N-glycan core. J Biol Chem 281: 19545–19560. doi: 10.1074/jbc.m603312200
[46]  Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci U S A 105: 6650–6655. doi: 10.1073/pnas.0800739105
[47]  Amano K, Ito E (1978) The action of lysozyme on partially deacetylated chitin. Eur J Biochem 85: 97–104. doi: 10.1111/j.1432-1033.1978.tb12216.x
[48]  Cancado FC, Chimoy Effio P, Terra WR, Marana SR (2008) Cloning, purification and comparative characterization of two digestive lysozymes from Musca domestica larvae. Braz J Med Biol Res 41: 969–977. doi: 10.1590/s0100-879x2008001100005
[49]  Regel R, Matioli SR, Terra WR (1998) Molecular adaptation of Drosophila melanogaster lysozymes to a digestive function. Insect Biochem Mol Biol 28: 309–319. doi: 10.1016/s0965-1748(97)00108-2
[50]  Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55: 609–632. doi: 10.1146/annurev-ento-112408-085319
[51]  Silva CP, Silva JR, Vasconcelos FF, Petretski MD, Damatta RA, et al. (2004) Occurrence of midgut perimicrovillar membranes in paraneopteran insect orders with comments on their function and evolutionary significance. Arthropod Struct Dev 33: 139–148. doi: 10.1016/j.asd.2003.12.002
[52]  Mury FB, da Silva JR, Ferreira LS, dos Santos Ferreira B, de Souza-Filho GA, et al. (2009) Alpha-glucosidase promotes hemozoin formation in a blood-sucking bug: an evolutionary history. PLoS One 4: e6966. doi: 10.1371/journal.pone.0006966
[53]  Terra WR, Ferreira C (2005) Biochemistry of digestion. In: Gilbert LI, Iatrou K, Gill SS, editors. Comprehensive Insect Molecular Science. Oxford: Elsevier. pp. 171–224.
[54]  Billingsley PF (1988) Morphometric analysis of Rhodnius prolixus Stal (Hemiptera:Reduviidae) midgut cells during blood digestion. Tissue Cell 20: 291–301. doi: 10.1016/0040-8166(88)90050-x
[55]  Padilha MH, Pimentel AC, Ribeiro AF, Terra WR (2009) Sequence and function of lysosomal and digestive cathepsin D-like proteinases of Musca domestica midgut. Insect Biochem Mol Biol 39: 782–791. doi: 10.1016/j.ibmb.2009.09.003
[56]  Lopez-Ordonez T, Rodriguez MH, Hernandez-Hernandez FD (2001) Characterization of a cDNA encoding a cathepsin L-like protein of Rhodnius prolixus. Insect Mol Biol 10: 505–511. doi: 10.1046/j.0962-1075.2001.00290.x
[57]  Musil D, Zucic D, Turk D, Engh RA, Mayr I, et al. (1991) The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. Embo J 10: 2321–2330.
[58]  Wex T, Wex H, Bromme D (1999) The human cathepsin F gene–a fusion product between an ancestral cathepsin and cystatin gene. Biol Chem 380: 1439–1442. doi: 10.1515/bc.1999.185
[59]  Nagler DK, Sulea T, Menard R (1999) Full-length cDNA of human cathepsin F predicts the presence of a cystatin domain at the N-terminus of the cysteine protease zymogen. Biochem Biophys Res Commun 257: 313–318. doi: 10.1006/bbrc.1999.0461
[60]  Meiser CK, Piechura H, Meyer HE, Warscheid B, Schaub GA, et al. (2010) A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: sequence characterization, expression pattern and characterization of proteolytic activity. Insect Mol Biol 19: 409–421. doi: 10.1111/j.1365-2583.2010.01002.x
[61]  Amino R, Tanaka AS, Schenkman S (2001) Triapsin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas' disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem Mol Biol 31: 465–472. doi: 10.1016/s0965-1748(00)00151-x
[62]  Bifano TD, Alegria TG, Terra WR (2010) Transporters involved in glucose and water absorption in the Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) anterior midgut. Comp Biochem Physiol B Biochem Mol Biol 157: 1–9. doi: 10.1016/j.cbpb.2010.05.014
[63]  Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev 79: 361–385.
[64]  Mende K, Petoukhova O, Koulitchkova V, Schaub GA, Lange U, et al. (1999) Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect. Dipetalogaster maximus cDNA cloning, expression and characterization. Eur J Biochem 266: 583–590. doi: 10.1046/j.1432-1327.1999.00895.x
[65]  Friedrich T, Kroger B, Bialojan S, Lemaire HG, Hoffken HW, et al. (1993) A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus. J Biol Chem 268: 16216–16222.
[66]  Meiser CK, Piechura H, Werner T, Dittmeyer-Schafer S, Meyer HE, et al. (2010) Kazal-type inhibitors in the stomach of Panstrongylus megistus (Triatominae, Reduviidae). Insect Biochem Mol Biol 40: 345–353. doi: 10.1016/j.ibmb.2010.02.011
[67]  Lovato DV, Nicolau de Campos IT, Amino R, Tanaka AS (2006) The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie 88: 673–681. doi: 10.1016/j.biochi.2005.11.011
[68]  Campos IT, Tanaka-Azevedo AM, Tanaka AS (2004) Identification and characterization of a novel factor XIIa inhibitor in the hematophagous insect, Triatoma infestans (Hemiptera: Reduviidae). FEBS Lett 577: 512–516. doi: 10.1016/j.febslet.2004.10.052
[69]  Campos IT, Amino R, Sampaio CA, Auerswald EA, Friedrich T, et al. (2002) Infestin, a thrombin inhibitor presents in Triatoma infestans midgut, a Chagas' disease vector: gene cloning, expression and characterization of the inhibitor. Insect Biochem Mol Biol 32: 991–997. doi: 10.1016/s0965-1748(02)00035-8
[70]  van de Locht ALD, Bauer MHR, Friedrich TKB, Hoffken W, Bode W (1995) Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J 14: 5149–5157.
[71]  Araujo RN, Campos IT, Tanaka AS, Santos A, Gontijo NF, et al. (2007) Brasiliensin: A novel intestinal thrombin inhibitor from Triatoma brasiliensis (Hemiptera: Reduviidae) with an important role in blood intake. Int J Parasitol 37: 1351–1358. doi: 10.1016/j.ijpara.2007.04.017
[72]  Takac P, Nunn MA, Meszaros J, Pechanova O, Vrbjar N, et al. (2006) Vasotab, a vasoactive peptide from horse fly Hybomitra bimaculata (Diptera, Tabanidae) salivary glands. J Exp Biol 209: 343–352. doi: 10.1242/jeb.02003
[73]  Kellenberger C, Roussel A (2005) Structure-activity relationship within the serine protease inhibitors of the pacifastin family. Protein Pept Lett 12: 409–414. doi: 10.2174/0929866054395239
[74]  Simonet G, Claeys I, Franssens V, De Loof A, Broeck JV (2003) Genomics, evolution and biological functions of the pacifastin peptide family: a conserved serine protease inhibitor family in arthropods. Peptides 24: 1633–1644. doi: 10.1016/j.peptides.2003.07.014
[75]  de Marco R, Lovato DV, Torquato RJ, Clara RO, Buarque DS, et al. (2010) The first pacifastin elastase inhibitor characterized from a blood sucking animal. Peptides 31: 1280–1286. doi: 10.1016/j.peptides.2010.03.033
[76]  Flower DR, North AC, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482: 9–24. doi: 10.1016/s0167-4838(00)00148-5
[77]  Andersen JF, Gudderra NP, Francischetti IM, Ribeiro JM (2005) The role of salivary lipocalins in blood feeding by Rhodnius prolixus. Arch Insect Biochem Physiol 58: 97–105. doi: 10.1002/arch.20032
[78]  Noeske-Jungblut C, Haendler B, Donner P, Alagon A, Possani L, et al. (1995) Triabin, a highly potent exosite inhibitor of thrombin. J Biol Chem 270: 28629–28634. doi: 10.1074/jbc.270.48.28629
[79]  Glusa E, Bretschneider E, Daum J, Noeske-Jungblut C (1997) Inhibition of thrombin-mediated cellular effects by triabin, a highly potent anion-binding exosite thrombin inhibitor. Thromb Haemost 77: 1196–1200.
[80]  Fuentes-Prior P, Noeske-Jungblut C, Donner P, Schleuning WD, Huber R, et al. (1997) Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. Proc Natl Acad Sci U S A 94: 11845–11850. doi: 10.1073/pnas.94.22.11845
[81]  Sansom CE, North ACT, Sawyer L (1994) Structural analysis and classification of lipocalins and related proteins using a profile-search method. Biochim Biophys Acta 1208: 247–255. doi: 10.1016/0167-4838(94)90110-4
[82]  Noeske-Jungblut C, Kr?tzschmar J, Haendler B, Alagon A, Possani L, et al. (1994) An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis. J Biol Chem 269: 5050–5053.
[83]  Haendler B, Becker A, C N-J, Kr?tzschmar J, Donner P, et al. (1995) Expression of active recombinant pallidipin, a novel platelet aggregation inhibitor, in the periplasm of Escherichia coli. Biochem J 307: 465–470.
[84]  So WV, Sarov-Blat L, Kotarski CK, McDonald MJ, Allada R, et al. (2000) takeout, a novel Drosophila gene under circadian clock transcriptional regulation. Mol Cell Biol 20: 6935–6944. doi: 10.1128/mcb.20.18.6935-6944.2000
[85]  Noriega FG, Shah DK, Wells MA (1997) Juvenile hormone controls early trypsin gene transcription in the midgut of Aedes aegypti. Insect Mol Biol 6: 63–66. doi: 10.1046/j.1365-2583.1997.00154.x
[86]  Bian G, Raikhel AS, Zhu J (2008) Characterization of a juvenile hormone-regulated chymotrypsin-like serine protease gene in Aedes aegypti mosquito. Insect Biochem Mol Biol 38: 190–200. doi: 10.1016/j.ibmb.2007.10.008
[87]  Nomura A, Kawasaki K, Kubo T, Natori S (1992) Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int J Dev Biol 36: 391–398.
[88]  Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25: 697–743. doi: 10.1146/annurev.immunol.25.022106.141615
[89]  Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23: 2333–2344. doi: 10.1101/gad.1827009
[90]  Meister S, Agianian B, Turlure F, Relogio A, Morlais I, et al. (2009) Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. Plos Pathogens 5: e1000542. doi: 10.1371/journal.ppat.1000542
[91]  Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5: e1000423. doi: 10.1371/journal.ppat.1000423
[92]  Ratcliffe NA, Rowley AF (1983) Recognition factors in insect hemolymph. Dev Comp Immunol 7: 653. doi: 10.1016/0145-305x(83)90086-1
[93]  Kanost MR, Jiang H, Yu XQ (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198: 97–105. doi: 10.1111/j.0105-2896.2004.0121.x
[94]  Araujo RN, Pereira MH, Soares AC, Pereira ID, Diotaiuti L, et al. (2009) Effect of intestinal erythrocyte agglutination on the feeding performance of Triatoma brasiliensis (Hemiptera: Reduviidae). J Insect Physiol 55: 862–868. doi: 10.1016/j.jinsphys.2009.06.002
[95]  Kato H, Jochim RC, Gomez EA, Sakoda R, Iwata H, et al. (2010) A repertoire of the dominant transcripts from the salivary glands of the blood-sucking bug, Triatoma dimidiata, a vector of Chagas disease. Infect Genet Evol 10: 184–191. doi: 10.1016/j.meegid.2009.10.012
[96]  Pereira ME, Andrade AF, Ribeiro JM (1981) Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science 211: 597–600. doi: 10.1126/science.7006082
[97]  Ratcliffe NA, Nigam Y, Mello CB, Garcia ES, Azambuja P (1996) Trypanosoma cruzi and erythrocyte agglutinins: a comparative study of occurrence and properties in the gut and hemolymph of Rhodnius prolixus. Exp Parasitol 83: 83–93. doi: 10.1006/expr.1996.0052
[98]  Dimopoulos G, Richman A, dellaTorre A, Kafatos FC, Louis C (1996) Identification and characterization of differentially expressed cDNAs of the vector mosquito, Anopheles gambiae. Proc Natl Acad Sci USA 93: 13066–13071. doi: 10.1073/pnas.93.23.13066
[99]  Dimopoulos G, Seeley D, Wolf A, Kafatos FC (1998) Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J 17: 6115–6123. doi: 10.1093/emboj/17.21.6115
[100]  Dimopoulos G, Muller HM, Levashina EA, Kafatos FC (2001) Innate immune defense against malaria infection in the mosquito. Curr Opin Immunol 13: 79–88. doi: 10.1016/s0952-7915(00)00186-2
[101]  Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, et al. (2004) A role for insect galectins in parasite survival. Cell 119: 329–341. doi: 10.1016/j.cell.2004.10.009
[102]  Goto A, Kumagai T, Kumagai C, Hirose J, Narita H, et al. (2001) A Drosophila haemocyte-specific protein, hemolectin, similar to human von Willebrand factor. Biochem J 359: 99–108. doi: 10.1042/0264-6021:3590099
[103]  Goto A, Kadowaki T, Kitagawa Y (2003) Drosophila hemolectin gene is expressed in embryonic and larval hemocytes and its knock down causes bleeding defects. Dev Biol 264: 582–591. doi: 10.1016/j.ydbio.2003.06.001
[104]  Lesch C, Goto A, Lindgren M, Bidla G, Dushay MS, et al. (2007) A role for Hemolectin in coagulation and immunity in Drosophila melanogaster. Dev Comp Immunol 31: 1255–1263. doi: 10.1016/j.dci.2007.03.012
[105]  Ryu JH, Ha EM, Lee WJ (2010) Innate immunity and gut-microbe mutualism in Drosophila. Dev Comp Immunol 34: 369–376. doi: 10.1016/j.dci.2009.11.010
[106]  Grosshans J, Schnorrer F, Nusslein-Volhard C (1999) Oligomerisation of Tube and Pelle leads to nuclear localisation of dorsal. Mech Dev 81: 127–138. doi: 10.1016/s0925-4773(98)00236-6
[107]  Kopp E, Medzhitov R, Carothers J, Xiao C, Douglas I, et al. (1999) ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev 13: 2059–2071. doi: 10.1101/gad.13.16.2059
[108]  Kim M, Lee JH, Lee SY, Kim E, Chung J (2006) Caspar, a suppressor of antibacterial immunity in Drosophila. Proc Natl Acad Sci U S A 103: 16358–16363. doi: 10.1073/pnas.0603238103
[109]  Schneider DS, Ayres JS, Brandt SM, Costa A, Dionne MS, et al. (2007) Drosophila eiger mutants are sensitive to extracellular pathogens. PLoS Pathog 3: e41. doi: 10.1371/journal.ppat.0030041
[110]  Berkey CD, Blow N, Watnick PI (2009) Genetic analysis of Drosophila melanogaster susceptibility to intestinal Vibrio cholerae infection. Cell Microbiol 11: 461–474. doi: 10.1111/j.1462-5822.2008.01267.x
[111]  Vidal M (2010) The dark side of fly TNF: an ancient developmental proof reading mechanism turned into tumor promoter. Cell Cycle 9: 3851–3856. doi: 10.4161/cc.9.19.13280
[112]  Liu Q, Rand TA, Kalidas S, Du F, Kim HE, et al. (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301: 1921–1925. doi: 10.1126/science.1088710
[113]  Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123: 631–640. doi: 10.1016/j.cell.2005.10.022
[114]  Saito K, Ishizuka A, Siomi H, Siomi MC (2005) Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 3: e235. doi: 10.1371/journal.pbio.0030235
[115]  Ursic-Bedoya RJ, Nazzari H, Cooper D, Triana O, Wolff M, et al. (2008) Identification and characterization of two novel lysozymes from Rhodnius prolixus, a vector of Chagas disease. J Insect Physiol 54: 593–603. doi: 10.1016/j.jinsphys.2007.12.009
[116]  Balczun C, Knorr E, Topal H, Meiser CK, Kollien AH, et al. (2008) Sequence characterization of an unusual lysozyme gene expressed in the intestinal tract of the reduviid bug Triatoma infestans (Insecta). Parasitol Res 102: 229–232. doi: 10.1007/s00436-007-0751-0
[117]  Araujo CA, Waniek PJ, Stock P, Mayer C, Jansen AM, et al. (2006) Sequence characterization and expression patterns of defensin and lysozyme encoding genes from the gut of the reduviid bug Triatoma brasiliensis. Insect Biochem Mol Biol 36: 547–560. doi: 10.1016/j.ibmb.2006.04.003
[118]  Kollien AH, Fechner S, Waniek PJ, Schaub GA (2003) Isolation and characterization of a cDNA encoding for a lysozyme from the gut of the reduviid bug Triatoma infestans. Arch Insect Biochem Physiol 53: 134–145. doi: 10.1002/arch.10090
[119]  Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198: 169–184. doi: 10.1111/j.0105-2896.2004.0124.x
[120]  Bonmatin JM, Bonnat JL, Gallet X, Vovelle F, Ptak M, et al. (1992) Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. J Biomol NMR 2: 235–256. doi: 10.1007/bf01875319
[121]  Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23: 329–344. doi: 10.1016/s0145-305x(99)00015-4
[122]  Lopez L, Morales G, Ursic R, Wolff M, Lowenberger C (2003) Isolation and characterization of a novel insect defensin from Rhodnius prolixus, a vector of Chagas disease. Insect Biochem Mol Biol 33: 439–447. doi: 10.1016/s0965-1748(03)00008-0
[123]  Lowenberger CA, Ferdig MT, Bulet P, Khalili S, Hoffmann JA, et al. (1996) Aedes aegypti: induced antibacterial proteins reduce the establishment and development of Brugia malayi. Exp Parasitol 83: 191–201. doi: 10.1006/expr.1996.0066
[124]  Lowenberger CA, Kamal S, Chiles J, Paskewitz S, Bulet P, et al. (1999) Mosquito-Plasmodium interactions in response to immune activation of the vector. Exp Parasitol 91: 59–69. doi: 10.1006/expr.1999.4350
[125]  Gibbs GM, Roelants K, O'Bryan MK (2008) The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins–roles in reproduction, cancer, and immune defense. Endocr Rev 29: 865–897. doi: 10.1210/er.2008-0032
[126]  Rubin DC (2007) Intestinal morphogenesis. Curr Opin Gastroenterol 23: 111–114. doi: 10.1097/mog.0b013e3280145082
[127]  Zhao WB, Wang X (2008) Phosphatases of regenerating liver: a novel target in human solid tumors. Chin Med J (Engl) 121: 1469–1474.
[128]  Yan Y, Merlin D (2008) Ste20-related proline/alanine-rich kinase: a novel regulator of intestinal inflammation. World J Gastroenterol 14: 6115–6121. doi: 10.3748/wjg.14.6115
[129]  Duraisamy S, Bajpai M, Bughani U, Dastidar SG, Ray A, et al. (2008) MK2: a novel molecular target for anti-inflammatory therapy. Expert Opin Ther Targets 12: 921–936. doi: 10.1517/14728222.12.8.921
[130]  Thuraisingam T, Xu YZ, Eadie K, Heravi M, Guiot MC, et al. (2010) MAPKAPK-2 signaling is critical for cutaneous wound healing. J Invest Dermatol 130: 278–286. doi: 10.1038/jid.2009.209
[131]  Zhang J, Anastasiadis PZ, Liu Y, Thompson EA, Fields AP (2004) Protein kinase C (PKC) betaII induces cell invasion through a Ras/Mek-, PKC iota/Rac 1-dependent signaling pathway. J Biol Chem 279: 22118–22123. doi: 10.1074/jbc.m400774200
[132]  Takagawa R, Akimoto K, Ichikawa Y, Akiyama H, Kojima Y, et al. (2010) High expression of atypical protein kinase C lambda/iota in gastric cancer as a prognostic factor for recurrence. Ann Surg Oncol 17: 81–88. doi: 10.1245/s10434-009-0708-x
[133]  Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119: 979–987. doi: 10.1242/jcs.02898
[134]  McCaffrey LM, Macara IG (2009) Widely conserved signaling pathways in the establishment of cell polarity. Cold Spring Harb Perspect Biol 1: a001370. doi: 10.1101/cshperspect.a001370
[135]  Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H (2009) LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 89: 777–798. doi: 10.1152/physrev.00026.2008
[136]  Hardie DG, Pan DA (2002) Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30: 1064–1070. doi: 10.1042/bst0301064
[137]  Forcet C, Billaud M (2007) Dialogue between LKB1 and AMPK: a hot topic at the cellular pole. Sci STKE 2007: pe51. doi: 10.1126/stke.4042007pe51
[138]  Lee JH, Koh H, Kim M, Kim Y, Lee SY, et al. (2007) Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447: 1017–1020. doi: 10.1038/nature05828
[139]  Guertin DA, Sabatini DM (2005) An expanding role for mTOR in cancer. Trends Mol Med 11: 353–361. doi: 10.1016/j.molmed.2005.06.007
[140]  Brandon MC, Pennington JE, Isoe J, Zamora J, Schillinger AS, et al. (2008) TOR signaling is required for amino acid stimulation of early trypsin protein synthesis in the midgut of Aedes aegypti mosquitoes. Insect Biochem Mol Biol 38: 916–922. doi: 10.1016/j.ibmb.2008.07.003
[141]  Roy SG, Hansen IA, Raikhel AS (2007) Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 37: 1317–1326. doi: 10.1016/j.ibmb.2007.08.004
[142]  Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, et al. (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137: 1343–1355. doi: 10.1016/j.cell.2009.05.014
[143]  Lin G, Xu N, Xi R (2008) Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455: 1119–1123. doi: 10.1038/nature07329
[144]  Fuss B, Hoch M (1998) Drosophila endoderm development requires a novel homeobox gene which is a target of Wingless and Dpp signalling. Mech Dev 79: 83–97. doi: 10.1016/s0925-4773(98)00172-5
[145]  Nakagoshi H, Hoshi M, Nabeshima Y, Matsuzaki F (1998) A novel homeobox gene mediates the Dpp signal to establish functional specificity within target cells. Genes Dev 12: 2724–2734. doi: 10.1101/gad.12.17.2724
[146]  Nakagoshi H, Shirai T, Nabeshima Y, Matsuzaki F (2002) Refinement of wingless expression by a wingless- and notch-responsive homeodomain protein, defective proventriculus. Dev Biol 249: 44–56. doi: 10.1006/dbio.2002.0746
[147]  Shirai T, Maehara A, Kiritooshi N, Matsuzaki F, Handa H, et al. (2003) Differential requirement of EGFR signaling for the expression of defective proventriculus gene in the Drosophila endoderm and ectoderm. Biochem Biophys Res Commun 311: 473–477. doi: 10.1016/j.bbrc.2003.10.017
[148]  Nakagawa Y, Fujiwara-Fukuta S, Yorimitsu T, Tanaka S, Minami R, et al. (2011) Spatial and temporal requirement of defective proventriculus activity during Drosophila midgut development. Mech Dev 128: 258–267. doi: 10.1016/j.mod.2011.02.003
[149]  Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, et al. (2000) Control of endodermal endocrine development by Hes-1. Nat Genet 24: 36–44. doi: 10.1038/71657
[150]  Matsuda Y, Wakamatsu Y, Kohyama J, Okano H, Fukuda K, et al. (2005) Notch signaling functions as a binary switch for the determination of glandular and luminal fates of endodermal epithelium during chicken stomach development. Development 132: 2783–2793. doi: 10.1242/dev.01853
[151]  Yen TH, Wright NA (2006) The gastrointestinal tract stem cell niche. Stem Cell Rev 2: 203–212. doi: 10.1007/s12015-006-0048-1
[152]  Ledent V, Vervoort M (2001) The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 11: 754–770. doi: 10.1101/gr.177001
[153]  Shilo BZ (2005) Regulating the dynamics of EGF receptor signaling in space and time. Development 132: 4017–4027. doi: 10.1242/dev.02006
[154]  Guo HF, Tong J, Hannan F, Luo L, Zhong Y (2000) A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403: 895–898. doi: 10.1038/35002593
[155]  Mummery-Widmer JL, Yamazaki M, Stoeger T, Novatchkova M, Bhalerao S, et al. (2009) Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458: 987–992. doi: 10.1038/nature07936
[156]  Tong JJ, Schriner SE, McCleary D, Day BJ, Wallace DC (2007) Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nat Genet 39: 476–485. doi: 10.1038/ng2004
[157]  Borovsky D, Janssen I, Vanden Broeck J, Huybrechts R, Verhaert P, et al. (1996) Molecular sequencing and modeling of Neobellieria bullata trypsin. Evidence for translational control by Neobellieria trypsin-modulating oostatic factor. Eur J Biochem 237: 279–287. doi: 10.1111/j.1432-1033.1996.0279n.x
[158]  Noriega FG, Colonna AE, Wells MA (1999) Increase in the size of the amino acid pool is sufficient to activate translation of early trypsin mRNA in Aedes aegypti midgut. Insect Biochem Mol Biol 29: 243–247. doi: 10.1016/s0965-1748(98)00132-5
[159]  Noriega FG, Wells MA (1999) A molecular view of trypsin synthesis in the midgut of Aedes aegypti. J Insect Physiol 45: 613–620. doi: 10.1016/s0022-1910(99)00052-9
[160]  Zhang D, Dimopoulos G, Wolf A, Minana B, Kafatos FC, et al. (2002) Cloning and molecular characterization of two mosquito iron regulatory proteins. Insect Biochem Mol Biol 32: 579–589. doi: 10.1016/s0965-1748(01)00138-2
[161]  Hajdusek O, Sojka D, Kopacek P, Buresova V, Franta Z, et al. (2009) Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc Natl Acad Sci U S A 106: 1033–1038. doi: 10.1073/pnas.0807961106
[162]  Niu LL, Fallon AM (2000) Differential regulation of ribosomal protein gene expression in Aedes aegypti mosquitoes before and after the blood meal. Insect Mol Biol 9: 613–623. doi: 10.1046/j.1365-2583.2000.00226.x
[163]  Motorin Y, Helm M (2010) tRNA stabilization by modified nucleotides. Biochemistry 49: 4934–4944. doi: 10.1021/bi100408z
[164]  Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, et al. (2006) Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 21: 87–96. doi: 10.1016/j.molcel.2005.10.036
[165]  Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, et al. (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19: 900–905. doi: 10.1038/nsmb.2357
[166]  Yarian C, Townsend H, Czestkowski W, Sochacka E, Malkiewicz AJ, et al. (2002) Accurate translation of the genetic code depends on tRNA modified nucleosides. J Biol Chem 277: 16391–16395. doi: 10.1074/jbc.m200253200
[167]  Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Bjork GR (2001) Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20: 4863–4873. doi: 10.1093/emboj/20.17.4863
[168]  Bjork GR, Durand JM, Hagervall TG, Leipuviene R, Lundgren HK, et al. (1999) Transfer RNA modification: influence on translational frameshifting and metabolism. FEBS Lett 452: 47–51. doi: 10.1016/s0014-5793(99)00528-1
[169]  Thompson DM, Parker R (2009) Stressing out over tRNA cleavage. Cell 138: 215–219. doi: 10.1016/j.cell.2009.07.001
[170]  Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, et al. (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Devel 24: 1590–1595. doi: 10.1101/gad.586710
[171]  Emilsson V, Naslund AK, Kurland CG (1992) Thiolation of transfer RNA in Escherichia coli varies with growth rate. Nucleic Acids Res 20: 4499–4505. doi: 10.1093/nar/20.17.4499
[172]  Chan CT, Pang YL, Deng W, Babu IR, Dyavaiah M, et al. (2012) Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun 3: 937. doi: 10.1038/ncomms1938
[173]  Souza AV, Petretski JH, Demasi M, Bechara EJ, Oliveira PL (1997) Urate protects a blood-sucking insect against hemin-induced oxidative stress. Free Radic Biol Med 22: 209–214. doi: 10.1016/s0891-5849(96)00293-6
[174]  Hernandez G, Altmann M, Sierra JM, Urlaub H, del Corral RD, et al. (2005) Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila. Mech Dev 122: 529–543. doi: 10.1016/j.mod.2005.10.006
[175]  Hernandez G, Vazquez-Pianzola P (2005) Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Dev 122: 865–876. doi: 10.1016/j.mod.2005.04.002
[176]  Cho PF, Poulin F, Cho-Park YA, Cho-Park IB, Chicoine JD, et al. (2005) A new paradigm for translational control: Inhibition via 5′-3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121: 411–423. doi: 10.1016/j.cell.2005.02.024
[177]  He B, Guo W (2009) The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21: 537–542. doi: 10.1016/j.ceb.2009.04.007
[178]  Schimmoller F, Singerkruger B, Schroder S, Kruger U, Barlowe C, et al. (1995) The absence of Emp24p, a component of ER-derived COPPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. Embo J 14: 1329–1339.
[179]  Onel S, Bolke L, Klambt C (2004) The Drosophila ARF6-GEF schizo controls commissure formation by regulating slit. Development 131: 2587–2594. doi: 10.1242/dev.01147
[180]  Egan TJ (2008) Haemozoin formation. Mol Biochem Parasitol 157: 127–136. doi: 10.1016/j.molbiopara.2007.11.005
[181]  Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14: 3–8. doi: 10.1111/j.1365-2583.2004.00529.x
[182]  Pasteur N, Raymond M (1996) Insecticide resistance genes in mosquitoes: their mutations, migration, and selection in field populations. J Hered 87: 444–449. doi: 10.1093/oxfordjournals.jhered.a023035
[183]  Graca-Souza AV, Maya-Monteiro C, Paiva-Silva GO, Braz GR, Paes MC, et al. (2006) Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem Mol Biol 36: 322–335. doi: 10.1016/j.ibmb.2006.01.009
[184]  Poupardin R, Riaz MA, Vontas J, David JP, Reynaud S (2010) Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti. Insect Mol Biol 19: 185–193. doi: 10.1111/j.1365-2583.2009.00967.x
[185]  Feyereisen R (2006) Evolution of insect P450. Biochem Soc Trans 34: 1252–1255. doi: 10.1042/bst0341252
[186]  Murataliev MB, Feyereisen R, Walker FA (2004) Electron transfer by diflavin reductases. Biochim Biophys Acta 1698: 1–26. doi: 10.1016/j.bbapap.2003.10.003
[187]  Murataliev MB, Guzov VM, Walker FA, Feyereisen R (2008) P450 reductase and cytochrome b5 interactions with cytochrome P450: effects on house fly CYP6A1 catalysis. Insect Biochem Mol Biol 38: 1008–1015. doi: 10.1016/j.ibmb.2008.08.007
[188]  Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44: 507–533. doi: 10.1146/annurev.ento.44.1.507
[189]  Rewitz KF, Rybczynski R, Warren JT, Gilbert LI (2006) The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone. Biochem Soc Trans 34: 1256–1260. doi: 10.1042/bst0341256
[190]  Paes MC, Oliveira MB, Oliveira PL (2001) Hydrogen peroxide detoxification in the midgut of the blood-sucking insect, Rhodnius prolixus. Arch Insect Biochem Physiol 48: 63–71. doi: 10.1002/arch.1058
[191]  Paes MC, Oliveira PL (1999) Extracellular glutathione peroxidase from the blood-sucking bug, Rhodnius prolixus. Arch Insect Biochem Physiol 41: 171–177. doi: 10.1002/(sici)1520-6327(1999)41:4<171::aid-arch1>3.0.co;2-5
[192]  Liu MC, Yasuda S, Idell S (2007) Sulfation of nitrotyrosine: biochemistry and functional implications. IUBMB Life 59: 622–627. doi: 10.1080/15216540701589320
[193]  Yasuda S, Yasuda T, Liu MY, Shetty S, Idell S, et al. (2011) Sulfation of chlorotyrosine and nitrotyrosine by human lung endothelial and epithelial cells: role of the human SULT1A3. Toxicol Appl Pharmacol 251: 104–109. doi: 10.1016/j.taap.2010.12.006
[194]  Valderrama R, Corpas FJ, Carreras A, Gomez-Rodriguez MV, Chaki M, et al. (2006) The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environment 29: 1449–1459. doi: 10.1111/j.1365-3040.2006.01530.x
[195]  Devireddy LR, Hart DO, Goetz DH, Green MR (2010) A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141: 1006–1017. doi: 10.1016/j.cell.2010.04.040
[196]  Ponka P (1999) Cell biology of heme. Am J Med Sci 318: 241–256. doi: 10.1097/00000441-199910000-00004
[197]  Braz GR, Abreu L, Masuda H, Oliveira PL (2001) Heme biosynthesis and oogenesis in the blood-sucking bug, Rhodnius prolixus. Insect Biochem Mol Biol 31: 359–364. doi: 10.1016/s0965-1748(00)00129-6
[198]  Dansa-Petretski M, Ribeiro JM, Atella GC, Masuda H, Oliveira PL (1995) Antioxidant role of Rhodnius prolixus heme-binding protein. Protection against heme-induced lipid peroxidation. J Biol Chem 270: 10893–10896. doi: 10.1074/jbc.270.18.10893
[199]  Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, et al. (2004) Identification of a human heme exporter that is essential for erythropoiesis. Cell 118: 757–766. doi: 10.1016/j.cell.2004.08.014
[200]  Paiva-Silva GO, Cruz-Oliveira C, Nakayasu ES, Maya-Monteiro CM, Dunkov BC, et al. (2006) A heme-degradation pathway in a blood-sucking insect. Proc Natl Acad Sci U S A 103: 8030–8035. doi: 10.1073/pnas.0602224103
[201]  Caiaffa CD, Stiebler R, Oliveira MF, Lara FA, Paiva-Silva GO, et al. (2010) Sn-protoporphyrin inhibits both heme degradation and hemozoin formation in Rhodnius prolixus midgut. Insect Biochem Mol Biol 40: 855–860. doi: 10.1016/j.ibmb.2010.08.005
[202]  Missirlis F, Holmberg S, Georgieva T, Dunkov BC, Rouault TA, et al. (2006) Characterization of mitochondrial ferritin in Drosophila. Proc Natl Acad Sci U S A 103: 5893–5898. doi: 10.1073/pnas.0601471103
[203]  Dunkov B, Georgieva T (2006) Insect iron binding proteins: insights from the genomes. Insect Biochem Mol Biol 36: 300–309. doi: 10.1016/j.ibmb.2006.01.007
[204]  Billingsley PF (1990) The midgut ultrastructure of hematophagous insects. Ann Rev Entomol 35: 219–248. doi: 10.1146/annurev.en.35.010190.001251
[205]  Atella GC, Gondim C, Masuda H (1995) Loading of lipophorin particles with phospholipids at the midgut of Rhodnius prolixus. Arch Insect Biochem Physiol 30: 337–350. doi: 10.1002/arch.940300404
[206]  Coelho HS, Atella GC, Moreira MF, Gondim KC, Masuda H (1997) Lipophorin density variation during oogenesis on Rhodnius prolixus. Arch Insect Biochem Physiol 35: 301–313. doi: 10.1002/(sici)1520-6327(199705)35:3<301::aid-arch4>3.0.co;2-w
[207]  Schmidt J, Kleffmann T, Schaub GA (1998) Hydrophobic attachment of Trypanosoma cruzi to a superficial layer of the rectal cuticle in the bug Triatoma infestans. Parasitol Res 84: 527–536. doi: 10.1007/s004360050443
[208]  Rawson RB (2003) The SREBP pathway–insights from Insigs and insects. Nat Rev Mol Cell Biol 4: 631–640. doi: 10.1038/nrm1174
[209]  Voght SP, Fluegel ML, Andrews LA, Pallanck LJ (2007) Drosophila NPC1b promotes an early step in sterol absorption from the midgut epithelium. Cell Metab 5: 195–205. doi: 10.1016/j.cmet.2007.01.011
[210]  Wong JT, Chan M, Lee D, Jiang JY, Skrzypczak M, et al. (2000) Phosphatidylcholine metabolism in human endothelial cells: modulation by phosphocholine. Mol Cell Biochem 207: 95–100.
[211]  Chua BT, Gallego-Ortega D, Ramirez de Molina A, Ullrich A, Lacal JC, et al. (2009) Regulation of Akt(ser473) phosphorylation by choline kinase in breast carcinoma cells. Mol Cancer 8: 131. doi: 10.1186/1476-4598-8-131
[212]  Helmkamp GM Jr, Harvey MS, Wirtz KW, Van Deenen LL (1974) Phospholipid exchange between membranes. Purification of bovine brain proteins that preferentially catalyze the transfer of phosphatidylinositol. J Biol Chem 249: 6382–6389.
[213]  Cockcroft S (1998) Phosphatidylinositol transfer proteins: a requirement in signal transduction and vesicle traffic. Bioessays 20: 423–432. doi: 10.1002/(sici)1521-1878(199805)20:5<423::aid-bies9>3.0.co;2-o
[214]  Atella GC, Arruda MA, Masuda H, Gondim KC (2000) Fatty acid incorporation by Rhodnius prolixus midgut. Arch Insect Biochem Physiol 43: 99–107. doi: 10.1002/(sici)1520-6327(200003)43:3<99::aid-arch1>3.3.co;2-v
[215]  Zhao Y, Natarajan V (2009) Lysophosphatidic acid signaling in airway epithelium: role in airway inflammation and remodeling. Cell Signal 21: 367–377. doi: 10.1016/j.cellsig.2008.10.010
[216]  Golodne DM, Monteiro RQ, Graca-Souza AV, Silva-Neto MA, Atella GC (2003) Lysophosphatidylcholine acts as an anti-hemostatic molecule in the saliva of the blood-sucking bug Rhodnius prolixus. J Biol Chem 278: 27766–27771. doi: 10.1074/jbc.m212421200
[217]  Chen X, Hyatt BA, Mucenski ML, Mason RJ, Shannon JM (2006) Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Proc Natl Acad Sci U S A 103: 11724–11729. doi: 10.1073/pnas.0604946103
[218]  Moolenaar WH (1995) Lysophosphatidic acid signalling. Curr Opin Cell Biol 7: 203–210. doi: 10.1016/0955-0674(95)80029-8
[219]  Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, et al. (2010) LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 50: 157–186. doi: 10.1146/annurev.pharmtox.010909.105753
[220]  Geijtenbeek TB, Westerman J, Heerma W, Wirtz KW (1996) Phosphatidylcholine transfer protein from bovine liver contains highly unsaturated phosphatidylcholine species. FEBS Lett 391: 333–335. doi: 10.1016/0014-5793(96)00770-3
[221]  Kanno K, Wu MK, Scapa EF, Roderick SL, Cohen DE (2007) Structure and function of phosphatidylcholine transfer protein (PC-TP)/StarD2. Biochim Biophys Acta 1771: 654–662. doi: 10.1016/j.bbalip.2007.04.003
[222]  Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149: 942–949. doi: 10.1210/en.2007-1713
[223]  Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51: 468–471. doi: 10.1194/jlr.r000034
[224]  Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, et al. (2002) Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277: 32253–32257. doi: 10.1074/jbc.m204410200
[225]  Patel RT, Soulages JL, Hariharasundaram B, Arrese EL (2005) Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body. J Biol Chem 280: 22624–22631. doi: 10.1074/jbc.m413128200
[226]  True JR, Yeh SD, Hovemann BT, Kemme T, Meinertzhagen IA, et al. (2005) Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genet 1: e63. doi: 10.1371/journal.pgen.0010063.eor
[227]  Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH (2002) Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J Immunol 168: 3771–3776.
[228]  Billker O, Lindo V, Panico M, Etienne AE, Paxton T, et al. (1998) Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392: 289–292. doi: 10.1038/32667
[229]  Lima VL, Dias F, Nunes RD, Pereira LO, Santos TS, et al. (2012) The antioxidant role of xanthurenic acid in the Aedes aegypti midgut during digestion of a blood meal. PLoS One 7: e38349. doi: 10.1371/journal.pone.0038349
[230]  Knubel CP, Martinez FF, Fretes RE, Diaz Lujan C, Theumer MG, et al. (2010) Indoleamine 2,3-dioxigenase (IDO) is critical for host resistance against Trypanosoma cruzi. FASEB J 24: 2689–2701. doi: 10.1096/fj.09-150920
[231]  Parre E, de Virville J, Cochet F, Leprince AS, Richard L, et al. (2010) A new method for accurately measuring Delta(1)-pyrroline-5-carboxylate synthetase activity. Methods Mol Biol 639: 333–340. doi: 10.1007/978-1-60761-702-0_21
[232]  Scaraffia PY, Wells MA (2003) Proline can be utilized as an energy substrate during flight of Aedes aegypti females. J Insect Physiol 49: 591–601. doi: 10.1016/s0022-1910(03)00031-3
[233]  Melzig J, Burg M, Gruhn M, Pak WL, Buchner E (1998) Selective histamine uptake rescues photo- and mechanoreceptor function of histidine decarboxylase-deficient Drosophila mutant. J Neurosci 18: 7160–7166.
[234]  Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, et al. (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317: 1753–1756. doi: 10.1126/science.1142490
[235]  Gromova I, Gromov P, Celis JE (2002) bc10: A novel human bladder cancer-associated protein with a conserved genomic structure downregulated in invasive cancer. Int J Cancer 98: 539–546. doi: 10.1002/ijc.10244

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal