All Title Author
Keywords Abstract

PLOS ONE  2012 

Bone Mineral Density-Associated Polymorphisms Are Associated with Obesity-Related Traits in Korean Adults in a Sex-Dependent Manner

DOI: 10.1371/journal.pone.0053013

Full-Text   Cite this paper   Add to My Lib


Obesity and osteoporosis share common physiological factors, including the presence of atherosclerosis, a risk factor for cardiometabolic disease, as well as a common progenitor that differentiates into both adipocytes and osteoblasts. Among the 23 polymorphisms associated with bone mineral density (BMD) in recent genome-wide association studies (GWASs), an Osterix polymorphism has been identified and associated with childhood obesity in girls. Therefore, we focused on elucidating polymorphisms associated with adulthood obesity in a sex-dependent manner among the previously published BMD-associated polymorphisms from GWASs. We performed 2 screenings of 18 BMD-associated polymorphisms for obesity-related traits in 2,362 adults aged >20 years. We excluded 13 polymorphisms showing deviations from Hardy–Weinberg equilibrium or no association with obesity-related traits (body mass index, waist circumference (WC), and waist-to-hip ratio). Among 5 selected polymorphisms (rs9594738 of RANKL, rs17066364 of NUFIP1, rs7227401 of OSBPL1A, and rs1856057 and rs2982573 of ESR1) analyzed, 2 polymorphisms (rs9594738 and rs17066364) were associated with obesity-related traits. We found sex-dependent associations such that the 4 polymorphisms (excluding rs9594738 of RANKL) were associated with abdominal traits such as WC and waist-to-hip ratio only in men. In addition, when the combined genetic risk score (GRS) for WC increase was calculated with 4 SNPs (rs9594738, rs17066364, rs7227401, and rs1856057) exhibiting similar trends for both sexes, the magnitude of the GRS effect for the WC increase was larger in men than in women (effect size = 0.856 cm, P = 0.0000452 for men; effect size = 0.598 cm, P = 0.00228 for women). In summary, we found 4 polymorphisms, previously related to osteoporosis, to be associated to obesity-related traits in a sex-dependent manner in Korean adults, particularly in men.


[1]  Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 8: 567–573.
[2]  Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, et al. (1999) Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res 14: 1622–1627.
[3]  Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, et al. (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92: 1640–1646.
[4]  Kim KC, Shin DH, Lee SY, Im JA, Lee DC (2010) Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women. Yonsei Med J 51: 857–863.
[5]  Kim JH, Choi HJ, Kim MJ, Shin CS, Cho NH (2011) Fat mass is negatively associated with bone mineral content in Koreans. Osteoporos Int 23: 2009–2016.
[6]  Sennerby U, Melhus H, Gedeborg R, Byberg L, Garmo H, et al. (2009) Cardiovascular diseases and risk of hip fracture. JAMA 302: 1666–1673.
[7]  Gerber Y, Melton LJ 3rd, Weston SA, Roger VL (2011) Osteoporotic fractures and heart failure in the community. Am J Med 124: 418–425.
[8]  Hak AE, Pols HA, van Hemert AM, Hofman A, Witteman JC (2000) Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol 20: 1926–1931.
[9]  Marcovitz PA, Tran HH, Franklin BA, O'Neill WW, Yerkey M, et al. (2005) Usefulness of bone mineral density to predict significant coronary artery disease. Am J Cardiol 96: 1059–1063.
[10]  von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106: 273–278.
[11]  Jorgensen L, Engstad T, Jacobsen BK (2001) Bone mineral density in acute stroke patients: low bone mineral density may predict first stroke in women. Stroke 32: 47–51.
[12]  Farhat GN, Newman AB, Sutton-Tyrrell K, Matthews KA, Boudreau R, et al. (2007) The association of bone mineral density measures with incident cardiovascular disease in older adults. Osteoporos Int 18: 999–1008.
[13]  Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, et al. (1997) Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 100: 1230–1239.
[14]  Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, et al. (2000) Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 49: 1231–1238.
[15]  Pilz S, Scharnagl H, Tiran B, Seelhorst U, Wellnitz B, et al. (2006) Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. J Clin Endocrinol Metab 91: 2542–2547.
[16]  Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V (2004) Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 89: 4246–4253.
[17]  Kiel DP, Kauppila LI, Cupples LA, Hannan MT, O'Donnell CJ, et al. (2001) Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 68: 271–276.
[18]  Blum M, Harris SS, Must A, Naumova EN, Phillips SM, et al. (2003) Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 73: 27–32.
[19]  Pasco JA, Henry MJ, Kotowicz MA, Collier GR, Ball MJ, et al. (2001) Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab 86: 1884–1887.
[20]  Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2: 35–43.
[21]  Guo Y, Liu H, Yang TL, Li SM, Li SK, et al. (2011) The fat mass and obesity associated gene, FTO, is also associated with osteoporosis phenotypes. PLoS One 6: e27312.
[22]  Liu YZ, Pei YF, Liu JF, Yang F, Guo Y, et al. (2009) Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS One 4: e6827.
[23]  Zhao J, Bradfield JP, Li M, Zhang H, Mentch FD, et al. (2011) BMD-associated variation at the Osterix locus is correlated with childhood obesity in females. Obesity (Silver Spring) 19: 1311–1314.
[24]  Dimitri P, Bishop N, Walsh JS, Eastell R (2012) Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone 50: 457–466.
[25]  Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, et al. (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41: 1199–1206.
[26]  Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, et al. (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358: 2355–2365.
[27]  Hsu YH, Zillikens MC, Wilson SG, Farber CR, Demissie S, et al. (2010) An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits. PLoS Genet 6: e1000977.
[28]  Paternoster L, Lorentzon M, Vandenput L, Karlsson MK, Ljunggren O, et al. (2010) Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential pleiotropic effects on bone. PLoS Genet 6: e1001217.
[29]  Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, et al. (2011) Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet 7: e1001372.
[30]  Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, et al. (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41: 527–534.
[31]  Kim BY, Jin HJ, Kim JY (2012) Genome-wide association analysis of Sasang constitution in the Korean population. J Altern Complement Med 18: 262–269.
[32]  Jeong S, Yu H, Lee Y, Kim JY (2011) SNP genotyping through the melting analysis of unlabelled oligonucleotide applied on dilute PCR amplicon. J Biotechnol 154: 321–325.
[33]  Cornelis MC, Qi L, Zhang C, Kraft P, Manson J, et al. (2009) Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann Intern Med 150: 541–550.
[34]  Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279–284.
[35]  Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.
[36]  Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, et al. (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42: 949–960.
[37]  Alonso CG, Curiel MD, Carranza FH, Cano RP, Perez AD (2000) Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int 11: 714–720.
[38]  Kovacs CS (2011) Calcium and bone metabolism disorders during pregnancy and lactation. Endocrinol Metab Clin North Am 40: 795–826.
[39]  Premaor MO, Ensrud K, Lui L, Parker RA, Cauley J, et al. (2011) Risk factors for nonvertebral fracture in obese older women. J Clin Endocrinol Metab 96: 2414–2421.
[40]  Xie H, Xie PL, Wu XP, Chen SM, Zhou HD, et al. (2011) Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression. Cardiovasc Res 92: 296–306.
[41]  de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, et al. (2007) Omentin plasma levels and gene expression are decreased in obesity. Diabetes 56: 1655–1661.
[42]  Halade GV, El Jamali A, Williams PJ, Fajardo RJ, Fernandes G (2011) Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp Gerontol 46: 43–52.
[43]  Bardoni B, Schenck A, Mandel JL (1999) A novel RNA-binding nuclear protein that interacts with the fragile X mental retardation (FMR1) protein. Hum Mol Genet 8: 2557–2566.
[44]  Raspa M, Bailey DB, Bishop E, Holiday D, Olmsted M (2010) Obesity, food selectivity, and physical activity in individuals with fragile X syndrome. Am J Intellect Dev Disabil 115: 482–495.
[45]  Jaworski CJ, Moreira E, Li A, Lee R, Rodriguez IR (2001) A family of 12 human genes containing oxysterol-binding domains. Genomics 78: 185–196.
[46]  Yan D, Lehto M, Rasilainen L, Metso J, Ehnholm C, et al. (2007) Oxysterol binding protein induces upregulation of SREBP-1c and enhances hepatic lipogenesis. Arterioscler Thromb Vasc Biol 27: 1108–1114.
[47]  Gu JM, Xiao WJ, He JW, Zhang H, Hu WW, et al. (2009) Association between VDR and ESR1 gene polymorphisms with bone and obesity phenotypes in Chinese male nuclear families. Acta Pharmacol Sin 30: 1634–1642.
[48]  Imamov O, Shim GJ, Warner M, Gustafsson JA (2005) Estrogen receptor beta in health and disease. Biol Reprod 73: 866–871.


comments powered by Disqus